The Pisocrinidae are one of those distinctive Palaeozoic marine groups, known from around the world during the Silurian and Devonian. As crinoids, they were perhaps not as immediately unfamiliar to the modern eye as some of the other taxa that could be found at that time, but they were certainly different from any modern crinoid. The majority of the crinoids that have ever lived can be assigned to one of two main clades. One, the cladid lineage, includes all the crinoids alive today. Pisocrinids belong to the other major lineage, the disparids, which were prominent for most of the Palaeozoic era but failed to make it past the end of the Permian. Disparids differed from cladids in that their calyx included a single circlet of plates (the inferradials) beneath the circlet of the radials (the large plates making up the main body of the calyx) whereas cladids (at least to begin with) had two such circlets. Many disparid sublineages showed a tendency towards reduction and/or simplification of the calyx. In pisocrinids, most of the calyx was made up of just three plates: two large radials (representing the A and D rays of the basic crinoid calyx) and a greatly enlarged B inferradial. The B, C and E radials were all reduced in size. The arms of pisocrinids mostly lacked lateral pinnules and were undivided; one genus, Cicerocrinus, had bifurcating arms bearing lateral ramules (Moore et al. 1978). The length of the arms varied considerably between species: in some they were quite short and broad, in others they were remarkably long. Because their derived morphology made it difficult to compare pisocrinids to related families, their origins have been regarded as mysterious. Rozhnov (2007) suggested a derivation from an earlier, more typical crinoid family, the Homocrinidae, via paedomorphosis, possibly as a result of the evolution of a longer larval period in the life cycle (he specifically suggested that this extended larval phase may have allowed the ancestors of pisocrinids to spread across the Iapetus Ocean between the then-existing continents of Laurentia and Baltica). A direct pisocrinid-homocrinid connection was not supported in the phylogenetic analysis of disparids by Ausich (2018) but Rozhnov's overall model of pisocrinid paedomorphosis remains a possibility.
During the Silurian, pisocrinids were among the most abundant, if not the most abundant, groups of crinoids. They were found in a variety of habitats but were particularly abundant around reefs in deeper waters. At first glance, the non-pinnulate arms of pisocrinids appear poorly suited for filter feeding, and one might be inclined to propose a more tentacular method of obtaining food items. However, such a method would seem unlikely for the short-armed species, whose arms would have been almost entirely inflexible. Even the long-armed species sometimes had arms made up of relatively long segments whose flexibility may have been limited. An alternative possibility, I suppose, is that in life pisocrinids may have had long tube feet that took the place of the missing pinnules. Meanwhile, the absence of the pinnules meant that the arms could be lain tightly alongside each other when the crown was closed. Earlier authors presumed that, because of their preference for deeper waters, pisocrinids were rheophobic (that is, they were found in places where the water lacked a noticeable current). However, Ausich (1977) proposed that they were low-energy rheophilic, seeking locations where a moderate but steady current prevailed. The current would provide a steady supply of organic particles that could be captured by the crown, and the ability to close the arms tight would protect the oral region during occasional bouts of rougher conditions.
REFERENCES
Ausich, W. I. 1977. The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology 51 (4): 672–686.
Ausich, W. I. (in press, 2018) Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade. Swiss Journal of Palaeontology.
Moore, R. C., N. G. Lane, H. L. Strimple, J. Sprinkle & R. O. Fay. 1978. Inadunata. In: Moore, R. C., & C. Teichert (eds) Treatise on Invertebrate Paleontology pt T. Echinodermata 2. Crinoidea vol. 2 pp. T520–T759. The Geological Society of America, Inc.: Boulder (Colorado), and The University of Kansas: Lawrence (Kansas).
Rozhnov, S. V. 2007. Changes in the Early Palaeozoic geography as a possible factor of echinoderm higher taxa formation: delayed larval development to cross the Iapetus Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 306–316.
Are you familiar with Sepkoski's concept of "evolutionary faunas"? According to it, the Palaeozoic fauna really had a higher proportion of sessile filter feeders than the modern one.
ReplyDeleteI'm familiar with the bare minimum of Sepkoski's work (basically, I know the diagram that made its way into the textbooks). But if this was a real phenomenon, what was the reason for it?
ReplyDeleteI'm not sure if Sepkoski had a particular explanation for that difference, but a quantitative demonstration that there difference is real should be a start.
Delete