Field of Science

The Rosy Birds

Violet-necked lories Eos squamata, copyright Niels Poul Dreyer.

In taxonomic days of yore, it was a not uncommon practice for new genera to be baptised under the names of classical figures: gods, heroes, emperors, even the occasional prophet (the practice only died down once the barrel of available names became largely empty). In many cases, the connection drawn between the organism in question and its awarded namesake was tenuous at best. In others, it was simply non-existent. But in a favoured few cases, the association fit perfectly.

Eos is a small genus (recent authors have recognised six species) of lories found on islands in eastern Indonesia. They are named, of course, after the Ἠώς ῥοδοδάκτυλος, the 'rosy-fingered dawn', of the ancient Greeks. It takes no great insight to realise why they were so-called: all members of the genus are predominantly coloured in a vibrant red, together with varying extents of blue, purple and/or black. Green is usually absent from their plumage (with some noteworthy exceptions that I'll have cause to mention again), distinguishing them from most closely related parrots such as the rainbow lorikeets in the genus Trichoglossus. Charles Lucien Bonaparte (nephew to the other Bonaparte, and a prominent nineteenth-century ornithologist) stated in 1850 that Eos could be recognised by its "elegant form, small stature, compact, red plumage with more or less blue; compressed, moderate, red bill, with the cere apparent... and longish, not very broad, wedged tail".

Blue-streaked lories Eos reticulata, copyright Doug Janson.

For the most part, Eos species are found on islands between Sulawesi and New Guinea. The black-winged lory Eos cyanogenia is found on islands in Geelvink Bay, in the north-west part of West Papua, but not on the mainland of New Guinea itself. For the most part, no island is home to more than one species of Eos. The island of Seram is an exception, with the endemic blue-eared lory Eos semilarvata found in the central highlands, and the red lory Eos whatchumacallit (see below) closer to the coast (this species is also found on other islands in the South Moluccas). The blue-streaked lory Eos reticulata is found in the Tanimbar group east of Timor. The violet-necked lory Eos squamata lays claim to the North Moluccas, and the red-and-blue lory Eos histrio is found on Talaud and other islands to the north-west of Sulawesi (Juniper & Parr 1998).

Black-winged lory Eos cyanogenia, copyright Lip Kee Yap.

While the taxonomy of the group has been mostly stable in recent years, it was not always so. Bonaparte (1850) snidely commented that some species of Eos had been described "too many times". Hume & Walters (2012) referred to five described species of Eos, all based on isolated specimens since lost, whose identity has been contested. While it is possible that some may represent species now extinct, it is equally possible that they represented unusual individuals of living species. In the absence of examinable type specimens, the identity of most is of academic interest only. The exception is the 'red-and-green lory' Eos bornea, which was originally named Psittacus borneus by old Carolus Linnaeus himself on the basis of a description and plate of a lory supposedly from Borneo published in 1751 by George Edwards (Walters 1998). Edwards' bird, which he had bought as a stuffed specimen from a toyshop in London, was described as dark pink, with a yellow bill, and green patches on the wings and tail. However, no species quite matching Edwards' description is known from Borneo or anywhere else, and it was subsequently suggested that he may had an unusual or a faded specimen of the Moluccan red lory, with the Bornean locality being an error. As such, the name Eos bornea came into use for the red lory, replacing the later-published name 'Eos rubra'. However, Walters (1998) subsequently disputed this identification, recommending the continued use of E. rubra. At present, 'Eos bornea' still seems to be the more commonly used name, and my own sympathies would be more with maintaining the familiar usage than with insisting on strict adherence to the original concept.

Red lories, Eos... let's just say bornea, shall we? Copyright Arnaud Delberghe.

Because of their striking appearance, Eos species have been heavily collected for the pet trade. The have also been widely affected by habitat degradation with the clearing of primary forests. While populations of most species are still regarded as reasonably robust, the IUCN regards all except E. squamata as on the decline. Eos histrio is regarded as actively endangered, having all but disappeared from some of its home islands. In 1999, it was estimated that 1000 to 2000 red-and-blue lories were being captured and exported for the pet trade each year—despite the total population of this species probably being not much more than 20,000 individuals!


Bonaparte, C. L. 1850. On the trichoglossine genus of parrots, Eos, with the description of two new species. Proceedings of the Zoological Society of London 18 (1): 26-29.

Hume, J. P., & M. Walters. 2012. Extinct Birds. T. & A. D. Poyser.

Juniper, T., & M. Parr. 1998. Parrots: A guide to the parrots of the world. Christopher Helm Publishers.

Walters, M. 1998. What is Psittacus borneus Linnaeus? Forktail 13: 124-125.

In a Pufferfish's Garden

Bullseye puffer Sphoeroides annulatus, copyright Geoffrey W. Schultz.

I don't know if it applies in other parts of the world, but one animal that you are guaranteed to see in the estuary here in Perth is pufferfish. One of the most instantly recognisable fish families, pufferfish (Tetraodontidae) are of course famed for their high toxicity, the determination of some people to eat them despite aforementioned toxicity, and their habit of swallowing air or water when threatened to inflate their distendible bellies. That last feature makes them a favourite of children (or at least of yours truly as a child), because their slow swimming style makes them one of the few fish that can be easily captured by hand (you just have to make sure you don't allow the fish to give you a nasty bite with their beak). The first feature makes them a lot less popular with fishermen who have to experience the frustration of reeling in a line to find that the bait has been taken by a puffer, then trying to remove the puffer from the hook while avoiding the aforementioned beak.

Oceanic puffer Lagocephalus lagocephalus, from Baino96.

There are a little under 200 known pufferfish species worldwide. Most of them are found in coastal marine and brackish waters, but there are also several species found in fresh water in South America, Africa and southeast Asia. Some marine species are also resistant to fresh water and may spend extended periods away from the sea. Some southeast Asian brackish-water Tetraodon species even make regular appearances in the the aquarium trade labelled as 'freshwater' puffers (Yamanoue et al. 2011), though their long-term survival requires more appropriate water conditions. The toxin associated with pufferfishes is not produced by the fish itself, but accumulated through its diet. As such, the exact level of toxicity of a pufferfish may vary according to season.

Grass puffer Takifugu niphobles, copyright OpenCage.

A molecular phylogenetic analysis of pufferfish by Yamanoue et al. (2011) identified four main clades in the family. These clades were also supported by a subsequent analysis by Santini et al. (2013), though the deeper relationships between the clades differed between the analyses. Yamanoue et al. (2011) identified a small number of freshwater clades (only one for each continent with freshwater taxa) and inferred that the transition from marine to fresh water had happened only rarely. Santini et al. (2013), in contrast, supported a higher number of transitions in tetraodontid history, though at least some of the difference between the two studies can be explained by differing definitions of 'freshwater'. For instance, some species of Takifugu usually live in brackish water but spawn in fresh water; Santini et al. counted these as freshwater species, but Yamanoue et al. did not.

Papuan toby Canthigaster papua, photographed by Dwayne Meadows.

One of the major clades identified within the Tetraodontidae includes the genus Lagocephalus, a group of relatively long-bodied puffers including some of the few pelagic puffer species. This genus may be the sister taxon of the remaining puffers (as found by Yamanoue et al.), or it may have a more nested position as sister to a clade including the mostly West Atlantic-East Pacific genera Sphoeroides and Colomesus (as found by Santini et al.). This latter clade includes South America's only freshwater puffer, the Amazon species Colomesus asellus. Santini et al. identified the basalmost tetraodontid clade as an Indo-West Pacific assemblage including the genus Takifugu and related taxa, which Yamanoue et al. had found as sister to the final clade including taxa related to the genus Tetraodon. This last clade includes the African and southeast Asian freshwater puffers (except for a few members of the Takifugu clade that cross into fresh water at times). It also includes the genus Canthigaster, the sharpnose pufferfish. In contrast to the more or less globular form of all other puffers, sharpnose puffers have a laterally compressed body form that superficially looks a bit more like a triggerfish than a puffer. Most Canthigaster species are reef-dwellers, a somewhat unusual habitat for a puffer (the other main group of reef-dwelling puffers being the genus Arothron, also in the Tetraodon clade).

Circular underwater 'nest' constructed by a pufferfish, from Spoon & Tamago.

One of the most remarkable characteristics of any puffer, though, was not discovered until quite recently. In 2012, it was announced that large structures observed off the coast of Japan by underwater photographer Yoji Ookata were in fact the work of pufferfish. These structures, circular and regular geometric patterns in the sea bed about 1.5 metres in diameter, were made by male puffers swimming against the sand. The structures are believed to function in attracting females, and also function as nests in which the females lay their eggs. Rather frustratingly, I haven't found any indication exactly which species of puffer is involved!

Puffer in the process of building a nest, also from Spoon & Tamago.


Santini, F., M. T. T. Nguyen, L. Sorenson, T. B. Waltzek, J. W. Lynch Alfaro, J. M. Eastman & M. E. Alfaro. 2013. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). Journal of Evolutionary Biology. doi: 10.1111/jeb.12112.

Yamanoue, Y., M. Miya, H. Doi, K. Mabuchi, H. Sakai & M. Nishida. 2011. Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): a mitogenomic perspective. PLoS ONE 6 (2): e17410. doi:10.1371/journal.pone.0017410.

The Lithoglyphidae: Let's Get Fresh

Live individuals of Lithoglyphus naticoides, copyright Jan Steger.

In previous posts on this site (see here and here), I've introduced you to members of the Hydrobiidae, a diverse family of mostly freshwater gastropods. Hydrobiids have long been recognised as a tricky group to work with, because of their small size and general shortage of distinctive shell features. In recent years, an understanding has developed that the 'hydrobiids' may include a number of lineages that became independently adapted to fresh water, and a number of previously recognised subfamilies of the Hydrobiidae have come to be recognised as their own distinct families. One of these ascended subgroups is the Lithoglyphidae.

Flat pebblesnails Lepyrium showalteri with eggs, copyright Friends of the Cahaba River National Wildlife Refuge.

The Lithoglyphidae are a family of about 100 known species, mostly found in the Holarctic region (Strong et al. 2008), though they have also been recorded from South America. Most lithoglyphids have distinctively squat, relatively thick shells, and for a long time this was treated as one of the main defining features of the group. However, Thompson (1984) pointed out that the sturdy lithoglyphid shell was probably an adaptation to living in fast-flowing streams and rivers, and could also be found in other 'hydrobiid' groups. As well as reducing the shell profile, the lithoglyphid shell possesses a broad aperture that allows for a proportionately large foot, increasing the snail's clinging power. Thompson (1984) identified a number of other features characteristic of lithoglyphids, including a spirally sculptured protoconch and a simple, blade-like penis that lacks accessory lobes or glandular structures. As the soft anatomy of many 'hydrobiids' has not yet been described, it is still possible that some taxa currently identified as lithoglyphids are in fact impostors. Conversely, confirmed lithoglyphids now include some taxa more divergent in shell shape, such as the limpet-like Lepyrium showalteri from Alabama. This species is distinctive enough that when first described it was identified as a neritid, a member of a group of gastropods not even closely related to lithoglyphids (imagine a new species of rodent being identified as a ratfish). Sadly, Lepyrium is also now endangered, being extinct in one of the two river catchments it was historically known from (see here). Thompson (1984) notes that another North American lithoglyphid genus, Clappia, may be entirely extinct. For at least one species, the cause of extinction was pollution from coal mining; no cause was specified for the other species, but according to Wikipedia its native habitat in the Coosa River has been modified by the construction of hydroelectric dams.

Shells of Benedictia baicalensis, from

Also closely related to the lithoglyphids are the Benedictiinae, a group of 'hydrobiid' gastropods endemic to Lake Baikal in Russia. A single species of benedictiine has been described from Lake Hövsgöl in Mongolia, but has not been collected there since; it seems likely that its original location was an error (Sitnikova et al. 2006). Baikal is a remarkable place: one of the world's largest freshwater lakes (and easily the largest in terms of the volume of water it contains), it is basically a freshwater sea. While other large lakes such as the Rift Lakes of Africa are poorly oxygenated at deeper levels, effectively restricting most animal life to the surface layer, Baikal has oxygen-rich deeper waters allowing a rich deep-water animal community (this may also be related to the numerous hydrothermal vents in the depths of Baikal). Some of you may have heard of the endemic Baikal seal Phoca sibirica, but Baikal is also home to a wide diversity of endemic fish (including a dramatic radiation of sculpins), a remarkable array of endemic amphipods, and even its own endemic family of sponges. The Benedictiinae are currently classified as a separate subfamily of Lithoglyphidae, with the remainder of species in the Lithoglyphinae (Bouchet et al. 2005), but as the relationship between the two subfamilies has not yet been examined in detail it is possible that the lithoglyphines are paraphyletic to the benedictiines. The benedictiines generally have thinner shells the lithoglyphines, possibly related to the differences in their usual habitats.


Bouchet, P., J.-P. Rocroi, J. Frýda, B. Hausdorf, W. Ponder, Á. Valdés & A. Warén. 2005. Classification and nomenclator of gastropod families. Malacologia 47 (1-2): 1-397.

Sitnikova, T., C. Goulden & D. Robinson. 2006. On gastropod mollusks from Lake Hövsgöl. In: Goulden, C. E., T. Sitnikova, J. Gelhaus & B. Boldgiv (eds) The Geology, Biodiversity and Ecology of Lake Hövsgöl (Mongolia), pp. 233-252. Backhuys Publishers: Leiden.

Strong, E. E., O. Gargominy, W. F. Ponder & P. Bouchet. 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595: 149-166.

Thompson, F. G. 1984. North American freshwater snail genera of the hydrobiid subfamily Lithoglyphinae. Malacologia 25 (1): 109-141.

The Little Tike that is Tychus

Male (left) and female of Tychus niger, copyright Lech Borowiec.

Another brief beetle post for today. The species in the image above is the type species of Tychus, a genus of about 150 species of pselaphine beetles found in Eurasia and North America. Chandler (1988) regarded the North American species as a separate genus Hesperotychus but Kurbatov & Sabella (2008) felt that the differences between species from the two continents were not enough to warrant separation. There's probably still some work to be done here.

Like many other pselaphines, most of the work on Tychus has focused on the morphology of the various species, with relatively little having been said about its life habits. Heer (1841) described the habitat of T. niger as 'sub lapidibus et in graminosis' which I believe means 'under stones and among grass', and Kurbatov & Sabella (2008) recorded collecting a specimen of Atychodea pilicollis, a related species, in damp sand. The large, broad-ended palps (the appendages on the head behind the antennae) of Tychus species suggests that they are probably micropredators, like the pselaphine Bryaxis puncticollis whose hunting behaviour was described in an earlier post. Like most pselaphines, the small size of Tychus species means that they generally escape observation.

Tychus is the largest genus in the pselaphine tribe Tychini. Tychins are most diverse in the Holarctic region, with only a very few species found in southern and south-east Asia. Chandler (1988) characterised the Tychini by the shape of the third segment of the palp, which is invariably longer than wide, and by the antennae usually being inserted close together on a narrow rostrum, though this varies a lot in distinctiveness between species. Kurbatov & Sabella (2008) also identified a number of other features representing possible synapomorphies of the Tychini, and suggested that the Oriental genera Atychodea and Amorphodea represent the sister taxon of the remaining Holarctic genera. The genera of Tychini are all fairly similar in appearance; notable distinguishing features of Tychus include an asymmetrical aedeagus (the intromittent organ in the male genitalia) and the arrangement of foveae (hollows) on the elytra and sternites. Males of Tychus often have one of the antennal segments modified as in the male of T. niger shown above, with a median segment noticeably thicker and broader than those on either side. The purpose of this enlarged segment, as with so many other features of pselaphines, seems to be unknown.


Chandler, D. S. 1988. A cladistic analysis of the world genera of Tychini (Coleoptera: Pselaphidae). Transactions of the American Entomological Society 114 (2): 147-165.

Heer, O. 1841. Fauna Coleopterorum Helvetica, pars 1. Impensis Orelii, Fuesslini et Sociorum: Turici.

Kurbatov, S. A., & G. Sabella. 2008. Revision of the genus Atychodea Reitter with a consideration of the relationships in the tribe Tychini (Coleoptera, Staphylinidae, Pselaphinae). Transactions of the American Entomological Society 134 (1-2): 23-68.

A Skinny Waist is Not That Important

Female Clitemnestra bipunctata carrying prey back to its nest. Copyright Bill Johnson.

It's time for another post on crabronid wasps! The hard-working individual in the photo above is Clitemnestra bipunctata, a species found in the United States of North America. This is the only species of this genus found north of Mexico; other species are found in South America and in Australasia (Australia, New Guinea and New Caledonia). Clitemnestra belongs to the Gorytini, a closely related tribe to the Bembicini featured in an earlier post, though C. bipunctata is smaller than the average bembicin. You can find a good description of the biology of C. bipunctata at Bug Eric's website.

When Bohart & Menke (1976) prepared their revision of the Sphecidae (which then included the current Crabronidae), they included Clitemnestra in the genus Ochleroptera. Ochleroptera was recognised as closely related to Clitemnestra, but the two genera were distinguished by the shape of the metasoma (the effective abdomen). In Ochleroptera, the first segment of the metasoma is relatively long and narrow, and there is a distinct constriction between it and the remainder of the metasoma (you can see this clearly in the picture above). In Clitemnestra, this segment is shorter and broader, and it is not so divided from the other segments. Because the latter arrangement is the more primitive, Bohart & Menke suggested that Ochleroptera was descended from Clitemnestra, and because both genera were found in both South America and Australasia, they suggested that the two genera had both originated in Australasia and dispersed independently to South America.

Habitus of Clitemnestra noumeae, from Ohl (2002).

However, it was soon realised that the distinction between the two genera was not as clear as had been thought. A number of species were identified in South America in which the segment shape was intermediate: a bit long and narrow for 'Clitemnestra', but not narrow enough for 'Ochleroptera'. As there were no other significant features distinguishing the genera, they were eventually synonymised. Subsequently, Ohl (2002) described another species, Clitemnestra noumeae, from New Caledonia that also has an intermediate metasomal form. Though no formal analysis has yet been done to confirm things one way or another, it seems likely that 'Clitemnestra' and 'Ochleroptera' do not represent independent dispersals between Australasia and the Americas. Instead, 'Ocheroptera' species have probably arisen independently within Clitemnestra on more than one occasion.

To date, Clitemnestra bipunctata is the best studied species in the genus natural history-wise; other species have only been described on sporadic occasions. Clitemnestra species nest in burrows in vertical banks, which they primarily stock with various species of leafhoppers. In the case of one Australian species, C. plomleyi, it was suggested that the burrows it was seen using were not dug by the wasp itself, but had been left behind by beetles or other wasps (Evans & O'Neill 2007). It remains to be seen whether this is typical behaviour for the species, or it may have represented opportunistic behaviour by one enterprising individual.


Bohart, R. M., & A. S. Menke. 1976. Sphecid Wasps of the World: a generic revision. University of California Press.

Evans, H. E., & K. M. O'Neill. 2007. Sand Wasps: Natural History and Behavior. Harvard University Press.

Ohl, M. 2002. A new species of the wasp genus Clitemnestra Spinola, 1851 from New Caledonia (Hymenoptera, Apoidea, Crabronidae, Bembicinae). Deutsche Entomologische Zeitschrift 49 (2): 275-278.

Hunter Balls: The Hydracha Water-Mites

Hydrachna sp., copyright J. C. Schou.

Hydrachnae are among the most rapacious of living animals, bold, fierce and cruel, the natural and inveterate enemies of all their congenera; they are no less hostile to each other, against which is waged a permanent war of extermination. Neither do they hesitate in attacking such animals as are suitable to their appetites, though double the size of their assailant.

This lurid description was applied to the water-mites by John Graham Dalyell in his 1851 book, The Powers of the Creator displayed in the Creation, or observations on life amidst the various forms of the humbler tribes of animated nature. The water-mites are a diverse group found mostly in fresh waters around the world; Dalyell probably intended the name Hydrachna to cover all water-mites, but modern authors recognise a large number of genera and families in addition to Hydrachna (which is distinctive enough that it is placed in its own family. Whether Hydrachna proper deserves the full force of Dalyell's description may be debatable, but there is no denying that they are predators.

As explained in an earlier post, water-mites belong to a group of mites, variously referred as Parasitengonae, Parasitengonina or some variation thereof (depending where you look), that is characterised by a life cycle including parasitic larvae and predatory adults. In the case of Hydrachna, the adults, which are nearly spherical in shape and bright red in colouration, feed on the eggs of aquatic bugs such as water boatmen or backswimmers that they find attached to submerged plants (so for all his charcterisation of Hydrachna as 'bold, fierce and cruel', Dalyell probably committed no less horrific an act of cruelty to chickens when he sat down to a fried breakfast). Despite their aquatic habits, Hydrachna are only clumsy swimmers themselves. After all, it does not require any great athleticism to hunt down an egg.

Larvae of Hydrachna, copyright Pfliegler Walter.

As well as finding their food on submerged plants, female Hydrachna lay their own eggs in them. They have needle-like chelicerae that they use to cut into the plant's stem, and then lay their eggs in air spaces within the plant cells (up to 1500 at a time: Walter et al. 2009). When the eggs hatch, the emerging larvae (which are kind of rugby ball-shaped) swim in search of a suitable host. Usually, this is a water-bug of much the same sort whose eggs were being devoured by the larvae's parents, though some Hydrachna species have also been recorded parasitising aquatic beetles. While some water-mites are quite picky about where exactly they choose to attach to a host, Hydrachna are not so: they may attach pretty much anywhere. They also do not exclude each other: a single host insect may end up with a large number of Hydrachna larvae attached to it (enough to have a serious impact on the host's health). The palps on either side of the chelicerae are used to initially hold on to the host before the larva cuts into the host cuticle with its chelicerae; once its hold with the chelicerae is firm, the palps are folded out of the way (Redmond & Lanciani 1982). Once attached, feeding on the host's haemolymph may not commence immediately: if the larva has found itself on a host that has not yet reached maturity, it will often wait until after the host has moulted. This is because the feeding larva becomes massively engorged and may swell up to hundreds of times its original size. In this swollen state, it obviously becomes immobile (one cannot walk if one's legs no longer touch the ground); should the host shed its cuticle with the engorged larva attached, the larva would be unable to reattach itself to the host.

After about two weeks of feeding, the larva is ready to mature, but this does not necessarily mean leaving the host. In parasitengonines, the first nymphal instar (the protonymph) after the larval stage is dormant as the mite metamorphoses into something closer to its adult form, the first of the two 'pupal' stages that the mite will go through in its life (the second comes between the active deutonymphal instar and maturity, but involves less of a radical change in morphology). Hydrachna passes this 'pupal' stage while still attached to the host, only detaching when it becomes an active deutonymph. As well as saving the larva the inconvenience (and danger) of dropping off the host while in an engorged state, this helps ensure that the deutonymph emerges in a suitable habitat. Hydrachna prefers still waters, such as ponds and lakes. Some species of Hydrachna prefer to breed in temporary seasonal pools, and may remain attached to the host for several months while their home pools are dry. Somehow they can tell the difference between the temporary pools and the more permanent waters in which the hosts spend the rest of their time.


Redmond, B. L., & C. A. Lanciani. 1982. Attachment and engorgement of a water mite, Hydrachna virella (Acari: Parasitengona), parasitic on Buenoa scimitra (Hemiptera: Notonectidae). Transactions of the American Microscopical Society 101 (4): 388-394.

Smith, I. M., D. R. Cook & B. P. Smith. 2010. Water mites (Hydrachnidiae) and other arachnids. In: Thorp, J. T., & A. P. Covich (eds) Ecology and Classification of North American Freshwater Invertebrates, pp. 485-586. Academic Press.

Walter, D. E., E. E. Lindquist, I. M. Smith, D. R. Cook & G. W. Krantz. 2009. Order Trombidiformes. In: Krantz, G. W., & D. E. Walter (eds) A Manual of Acarology, 3rd ed., pp. 233-420. Texas Tech University Press.

Black Yeasts, Black Lichens and Rotting Wood: the Chaetothyriomycetidae

Pyrenula cruenta, copyright Gary Perlmutter.

There is no denying that the advent of molecular phylogenetic analysis has been a boon for fungal systematics. It has allowed a much greater resolution of relationships than was previously possible (especially for comparisons between asexually- and sexually-reproducing fungi), and has even lead to the identification of a number of major lineages that probably could have never been recognised from morphological data alone. One such lineage is the Chaetothyriomycetidae, whose members vary from lichens on tropical tree trunks, to saprobes living in the deep sea, to pathogens in the brains of humans.

The Chaetothyriomycetidae (or Chaetothyriomycetes in many older references: the botanical code goes rather all out in the rather irritating practice of changing the endings of names to indicate arbitrary taxonomic ranks) has been divided by Gueidan et al. (2014) into four major lineages. Two of these, the Pyrenulales and Verrucariaceae, are mostly comprised of lichens. Lichenised fungi in the Pyrenulales associate with green algae of the family Trentopohliaceae (which, despite being 'green algae', are generally orange in colour), and are most commonly found on tree bark in tropical forests. Only one lichenised genus, Strigula, is also found growing on leaves; non-lichenised Pyrenulales are found on bark, leaves or wood (Geiser et al. 2006).

Verrucaria maura on coastal rocks, copyright A. J. Silverside.

The Verrucariaceae, in contrast, associate with different symbiotic algae, and prefer to grow on rocks. Lichens of this family are often blackish; their hyphae are darkened by a melanin-like compound which allows them to tolerate quite exposed conditions. Certain species are particularly prominent around the marine shoreline. Gueidan et al. (2014) also identified a small as-yet-unnamed lineage close to Verrucariaceae including rock-dwelling and moss-associated non-lichenised fungi, but support for this grouping requires further testing.

Another somewhat novel lineage identified by Gueidan et al. (2014) was the Celotheliaceae. The type genus, Celothelium, is a lichenised fungus that associates with the alga Trentepohlia in the manner of Pyrenulaceae. Other members of the Celotheliaceae, however, are quite different in ecology, being mostly pathogens of woody plants. Phaeomoniella chlamydospora is a causative agent of grapevine trunk disease, resulting in conditions such as esca, and the rather ominously named 'black goo decline' (so-called because the stems become filled with 'black goo', as the xylem vessels become clogged with fungal hyphae). Dolabra nepheliae causes canker in lychee and rambutan trees. These pathogenic taxa are commonly largely anamorphic (that is, they produce asexual reproductive structures).

Culture of black yeast Exophiala dermatitidis, from here.

The last and most diverse lineage (so far as we know, anyway) is the Chaetothyriales. Like the Verrucariaceae, the Chaetothyriales have melanised hyphae and often grow on exposed substrates such as rocks. Indeed, molecular analyses have supported a closer relationship between Verrucariaceae and Chaetothyriales than the other major lineages. However, members of the Chaetothyriales are not lichenised. Many are saprobic; others, such as the Chaetothyriaceae, grow on plant leaves but in many cases it is unclear whether they are saprobic or parasitic. The mostly saprobic family Herpotrichiellaceae also includes a number of asexually-reproducing forms that grow as yeasts and are opportunistic pathogens, including in humans. Infections by black yeasts (Exophiala) are most commonly cutaneous and relatively superficial, but they can also cause severe and life-threatening infections of deeper organ systems. These infections are most common in patients with pre-existing conditions affecting the immune system, but at least one species, E. dermatitidis, has been recorded causing fatal brain infections in otherwise healthy individuals.

And I referred at the beginning of this post to the deep sea? Well, the Chaetothyriomycetidae samples from there are, I believe, yet to be described. It is possible that this diverse group of fungi still has surprises for us.


Geiser, D. M., C. Gueidan, J. Miadlikowska, F. Lutzoni, F. Kauff, V. Hofstetter, E. Fraker, C. L. Schoch, L. Tibell, W. A. Untereiner & A. Aptroot. 2006. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98 (6): 1053-1064.

Gueidan, C., A. Aptroot, M. E. da Silva Cáceres, H. Badali & S. Stenroos. 2014. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol. Progress 13: 1027-1039.