Field of Science

The Concilitergans: Sitting Next to Trilobites

The last few decades have seen a vast increase in our understanding of life during the early Cambrian. Long one of the most famous groups of invertebrates of the Palaeozoic, the trilobites are now known to have shared their early environment with a number of related lineages that bore some resemblance in overall appearance but lacked their mineralisation of the exoskeleton. One such group was labelled by Hou & Bergström (1997) as the Conciliterga.

Reconstruction of the concilitergan Kuamaia lata from Hou & Bergström (1997). Note that the reconstructed appearance of the eyes is probably erroneous, as explained below.


Concilitergans are a group of flattened marine arthropods known from the early and middle Cambrian of a number of parts of the world, including North America, China and Australia. Most species were ovoid in shape (like a typical trilobite), tapering somewhat towards the rear and often ending in a point. An Australian species, Australimicola spriggi, was more elongate in form and ended in a pair of terminal spines. Some were quite sizable; one species, Tegopelte gigas, reached nearly a foot in length and was one of the largest known animals of its time. Concilitergans also resembled trilobites in possessing a more or less semi-circular head shield followed by a series of regular segments and often a final larger pygidial segment. Towards the front of the body, the segment boundaries were anteriorly reflexed (Paterson et al. 2012). In a number of species, the body segmentation was more prominent medially than laterally with the tergites overlapping slightly down the mid-line but not along the edges. A pair of antennae arose from the underside of the head near the front. In most species, with the exception of Australimicola, a pair of prominent teardrop-shaped bulges was also present dorsally near the front of the head. These bulges were interpreted as a pair of dorsal eyes by Hou & Bergström (1997) but re-interpreted by Edgecombe & Ramsköld (1999) as raised areas of the exoskeleton that provided accomodation for the actual eyes located on the underside of the head.

Reconstruction of Tegopelte gigas, copyright Marianne Collins.


Phylogenetic analyses have confirmed a close relationship between concilitergans and trilobites (Edgecombe & Ramsköld 1999) and the two groups probably resembled each other in life-style. With their ovoid shape, flattened body and down-cast eyes, concilitergans were also not dissimilar in overall conformation to modern cockroaches and a comparison is tempting. Study of trackways attributed to Tegopelte, owing to their size and structure, indicated that it mostly walked with a slow, low gait but was also capable of adopting a higher, faster gait for quickly skimming across the sediment surface (Minter et al. 2012). It should be noted that while news reports on the latter study (like this one) repeatedly refer to Tegopelte as a predator, the original paper consistently describes it as a "predator or scavenger". One can imagine concilitergans crawling along the sea-bed, picking up fragments of organic matter and scavenging on the remains of the less fortunate. Eventually, though, their lack of armament compared to their longer-surviving allies might have been their downfall as they were less prepared to deal with the diversification of active predators as the Cambrian progressed.

REFERENCES

Edgecombe, G. D., & L. Ramsköld. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology 73 (2): 263–287.

Hou X. & J. Bergström. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata 45: 1–116.

Minter, N. J., M. G. Mángano & J.-B. Caron. 2012. Skimming the surface with Burgess Shale arthropod locomotion. Proceedings of the Royal Society of London Series B—Biological Sciences 279: 1613–1620.

Paterson, J. R., D. C. García-Bellido & G. D. Edgecombe. 2012. New artiopodan arthropods from the Early Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia. Journal of Paleontology 86 (2): 340–357.

Tuskfish

The reefs of the Indo-west Pacific Oceans are one of the most species-rich regions of the entire marine environment. A complex geological history and high geographical complexity have contributed to drive speciation, resulting in a number of local radiations. One such radiation is the tuskfishes of the genus Choerodon.

Orange-dotted tuskfish Choerodon anchorago, copyright Bernard Dupont.


Choerodon is a genus of the wrasse family Labridae, most diverse around the islands of south-east Asia and northern Australasia where they inhabit coastal reefs or sea-grass beds. A revision of the genus by Gomon (2017) recognised 27 species, varying in size from a little over ten centimetres in length to half a metre or more. LIke other members of the wrasse family, they are often brightly coloured, with juveniles in particular of a number of species being patterned with bold vertical stripes. The vernacular name of 'tuskfish', as well as the zoological name of the genus (which translates as 'pig-tooth'), refers to the possesion of a pair of prominent, protruding incisors at the front of each of the upper and lower jaws. Other characteristic features of Choerodon include a dorsal fin with twelve spiny rays and eight soft rays, or thirteen spines and seven soft rays, and a lack of scales on the lower part of the cheek and lower jaw. Choerodon species, like most other wrasses, are protogynous hermaphrodites, starting their lives as females before eventually transforming into males.

Baldchin groper Choerodon rubescens, copyright Katherine Cure.


Diet-wise, tuskfishes are predators, feeding on animals such as crustaceans or mollusks. Larger species may even take other vertebrates. A kind of tool use has been observed for the genus, with difficult prey such as clams (Jones et al. 2011) or young turtles (Harborne & Tholan 2016) being grasped in the mouth and hammered against rocks to subdue them and/or break open shells. Multiple species of tuskfish may be found in close proximity though they will often differ in their preferred habitat. A study of five Choerodon species found around Shark Bay in Western Australia by Fairclough et al. (2008) found that the baldchin groper C. rubescens was found only on exposed marine reefs whereas the other four species preferred more sheltered habitats further inside the bay. The blue tuskfish C. cyanodus and blackspot tuskfish C. schoenleinii were both found in a range of habitats in this region but C. cyanodus was most abundant along rocky shores whereas C. schoenleinii preferred coral reefs (C. schoenleinii also differed from other species in the region in constructing burrows at the base of reefs that it used as a retreat). The purple tuskfish C. cephalotes was almost exclusively found among seagrass meadows. Finally, the bluespotted tuskfish C. cauteroma spent the early part of its life among seagrasses but moved onto reefs as it matured to adulthood.

Tuskfish and other wrasses are highly prized as eating fishes. However, it would be remiss to refer to the reefs of the Indo-west Pacific without mentioning that many of them are highly endangered. Heavy fishing, often using destructive methods, have combined with the effects of changing climate to cause a dramatic reduction in reef cover in recent decades. Should the decline continue at current rates, the lives of millions of people stand to be dangerously impacted.

REFERENCES

Fairclough, D. V., K. R. Clarke, F. J. Valesini & I. C. Potter. 2008. Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment. Estuarine, Coastal and Shelf Science 77: 446–456.

Gomon, M. F. 2017. A review of the tuskfishes, genus Choerodon (Labridae, Perciformes), with descriptions of three new species. Memoirs of Museum Victoria 76: 1–111.

Harborne, A. R., & B. A. Tholan. 2016. Tool use by Choerodon cyanodus when handling vertebrate prey. Coral Reefs 35: 1069.

Jones, A. M., C. Brown & S. Gardner. 2011. Tool use in the tuskfish Choerodon schoenleinii? Coral Reefs 30 (3): 865.

Australasian Mistletoes

Australia is home to a fair diversity of parasitic mistletoes, nearly ninety species in all. In a previous post, I described one of our most remarkable species, the terrestrial Nuytsia floribunda. But, of course, the remaining species occupy the more typical aerial mistletoe habitat, growing directly attached to the branches and trunk of their host. And within Australia, the most diverse mistletoe genus is Amyema.

Amyema pendula growing on Acacia, copyright Groogle.


Species of Amyema are found in southeast Asia, Australia, and islands of the Pacific as far east as Samoa. A revision of the genus by Barlow (1992) recognised 92 species with the greatest diversity in the Philippines, Australia and New Guinea. They are found in a range of habitats, from wet rainforests to arid woodlands. Some species (particularly in arid habitats) grow from a single central haustorium (the structure by which a parasitic plant attaches to and draws nutrients from its host); others (particularly rainforest species) produce numerous haustoria from runners stretching along the outside of the host. Most rainforest species tend to have low host specificity but those growin in arid habitats may be more likely to restrict themselves to a small number of host species. Those species which restrict themselves to a single host may have leaves closely resembling that host, making them difficult to spot within the host canopy.

Amyema species are mostly characterised by their flowers which are typical borne in triads with the triads often then being clustered in loose umbels. In some species, the triads are reduced to pairs or single flowers. The flowers themselves are bird-pollinated and have four to six long petals that are generally separated right to the base, at most forming only a very short tube at the base of the flower. The flowers are hermaphroditic though a study of some Australian species by Bernhardt et al. (1980) found a tendency for anthers to mature before the stigma, presumably to prevent self-pollination.

Flowers of Amyema miquelii, copyright Kevin Thiele.


Not surprisingly, attention on mistletoes in Australia has commonly been focused on their effect on host trees. Mistletoe infestations may be heavy and have commonly been blamed for tree mortalities. However, one might legitimately question whether mistletoes themselves cause fatalities: does mistletoe infestation cause a host tree to become unhealthy, or are unhealthy trees more vulnerable to infestation by mistletoes? A study by Reid et al. (1992) on Amyema preissii infesting Acacia victoriae found that, though there was a relationship between mistletoe volume and host mortality, they were unable to demonstrate that mistletoe removal improved host survival. Conversely, such a positive effect was found by Reid et al. (1994) for removal of Amyema miquelii growing on two Eucalyptus species (the methods of this latter study also include the great line, "the highest mistletoes had to be shot down with a .22 rifle"). However, the authors remained conservative when it came to advocating mistletoe removal. Not only do a number of native birds and other animals depend on mistletoes for food and nesting sites, mistletoe removal can be an expensive process and may not itself be devoid of adverse effects on the host tree. Where rates of infestation are not extreme, it may still be better to just live and let live.

REFERENCES

Barlow, B. A. 1992. Conspectus of the genus Amyema Tieghem (Loranthaceae). Blumea 36: 293–381.

Bernhardt, P., R. B. Knox & D. M. Calder. 1980. Floral biology and self-incompatibility in some Australian mistletoes of the genus Amyema (Loranthaceae). Australian Journal of Botany 28: 437–451.

Reid, N., D. M. Stafford Smith & W. N. Venables. 1992. Effect of mistletoes (Amyema preissii) on host (Acacia victoriae) survival. Australian Journal of Ecology 17: 219–222.

Reid, N., Z. Yan & J. Fittler. 1994. Impact of mistletoes (Amyema miquelii) on host (Eucalyptus blakelyi and Eucalyptus melliodora) survival and growth in temperate Australia. Forest Ecology and Management 70: 55–65.

Moles, Tortoises, Calves and Cowries

The cowries of the family Cypraeidae are one of the most readily recognisable groups of tropical and subtropical shells. Their distinctive shape (with no spire and a long narrow aperture running the length of the shell) and highly polished appearance are guaranteed to catch the eye (to the extent that one species, the money cowry Monetaria moneta, famously has a history of being used as a form of currency in many regions around the Indian Ocean). Though there are a large number of cowry species found around the world, they tend to be similar enough to each other that, until relatively recently, many authors would place all within a single genus Cypraea. This approach has fallen out of fashion in more recent years and, indeed, the current favoured approach divides the family between several subfamilies. One such subgroup is the subfamily Luriinae.

Live mole cowry Talparia talpa, copyright Juuyoh Tanaka.


In a phylogenetic analysis of the cowries, Meyer (2003) recognised the Luriinae as including two tribes, the Luriini and Austrocypraeini. This concept of Luriinae was essentially based on molecular phylogenetic analysis though it was also corroborated by radular morphology (with a reduced shaft on all teeth). The underside of the shell in luriines is mostly smooth with the 'teeth' being restricted to alongside the aperture. As in other cowries, the mantle is widely extended and mostly covers the shell in life (this is how cowry shells stay so shiny). In most luriines, the mantle is covered by warty papillae. In species of the genus Luria these warts are obsolete (Schilder 1939) but they are particularly prominent in the Indo-west Pacific mole cowry Talparia talpa. Members of the Luriinae vary greatly in size: the Pacific Annepona mariae is only a centimetre or two in length but the tortoise cowry Chelycypraea testudinaria of the Indian and western Pacific Oceans grows to ten centimetres or more. Species of Luriini have shells that are banded in coloration, with three or four broad dark bands divided by narrower light bands. The Austrocypraeini are most commonly marked with brown speckles or blotches on a pale background; these blotches may be irregular as in Chelycypraea testudinaria or more regularly rounded as in Annepona mariae. The calf cowry Lyncina vitellus of the Indo-Pacific is marked with white spots on a brown background, and some species or forms of Austrocypraeini may have coloration patterns more like the banded arrangement of Luriini.

Lynx cowry Lyncina lynx, copyright Patrick Randall.


My impression is that species of Luriinae tend to be mostly nocturnal, sheltering in crevices in coral reefs during the day before emerging to feed at dusk (the name of the aforementioned mole cowry is, I suspect, more likely to refer to its appearance in some way than to any actual burrowing habit). Though I haven't (though a cursory search, at least) found any reference to species of Luriinae in particular being endangered, a number of cowries in general have been threatened by overcollecting for their shells. Certainly, luriines would be subject to the broad range of threats that currently hang over coral reefs and their inhabitants anywhere in the world.

REFERENCES

Meyer, C. P. 2003. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society 79: 401-459.

Schilder, F. A. 1939. Die Genera der Cypraeacea. Archiv für Molluskenkunde 71 (5–6): 165–201.

Aidanosagitta

If you've ever spent time, as I certainly did back in my undergraduate days, thumbing through textbooks of animal diversity, then you may be familiar with the so-called 'minor phyla'. These are those isolated subgroups of the animal kingdom that are phylogenetically remote from other such taxa but which, owing to low diversity and/or low exposure, are commonly not regarded as warranting more than a cursory summary in the end-papers of some other more prominent group. One such group is the arrow worms (Chaetognatha), and for this post I'm focusing on the arrow worm genus Aidanosagitta.

Arrow worms are marine micropredators, slender-bodied animals mostly growing to a bit less than a centimetre in length but generally not seen without the aid of a microscope due to being mostly transparent. The greater number of arrow worm species are planktonic and could be described as superficially fish-like with paired fins running down the side of the body. The front of the head forms a flexible hood within with the mouth is flanked by elongate spines, used for grasping prey.

Two Aidanosagitta species: A. bella (above) and A. venusta (below), from Kasatkina & Selivanova (2003).


A review of the arrow worms by Tokioka (1965) recognised fifteen genera within the phylum. Aidanosagitta is one of the planktonic genera; currently, about thirty species are recognised within this genus. Distinguishing features of the genus include a firm, muscular body, diverticula arising from the gut, and the posterior pair of fins being located on the 'tail' section of the body (behind the anus) (Kasatkina & Selivanova 2003).

The majority of Aidanosagitta species are found in tropical and subtropical waters, most commonly in inlets and lakes. An exception is provided by a number of species found in colders waters adjoining the north-west Pacific, in the Sea of Okhotsk and the Sea of Japan (Kasatkina & Selivanova 2003). Species are distinguished by features such as the sizes of the fins, the size and position of the large subenteric ganglion, and the presence and extent of a layer of spongy tissue that may partially cover the outside of the body. Particular species of arrow worms may be associated with particular bodies of water (such as particular currents) and changes in their distribution may indicate changes in the greater environment.

REFERENCES

Kasatkina, A. P., & E. N. Selivanova. 2003. Composition of the genus Aidanosagitta (Chaetognatha), with descriptions of new species from shallow bays of the northwestern Sea of Japan. Russian Journal of Marine Biology 29 (5): 296–304.

Tokioka, T. 1965. The taxonomical outline of Chaetognatha. Publications of the Seto Marine Biological Laboratory 12 (5): 335–357.

Apiocera: Flower-Loving Flies that Don't Particularly Care for Flowers

The insect world is full of animals that may be striking in appearance but about which we know relatively little. Such, for instance, are the flies of the genus Apiocera.

Male Apiocera, copyright Chris Lambkin.


Apiocera is a genus of a bit over 130 known species of relatively large flies, about half an inch to an inch in length, that are found in hot, arid habitats in disparate parts of the world: western North America, southern South America, southernmost Africa and Australia. Records of Apiocera from Borneo and Sri Lanka were regarded by Yeates and Irwin (1996) as probably errors. They are similar in their overall appearance to the robber flies of the family Asilidae, differing lacking the piercing mouthparts of robber flies or the moustache of bristles below the antennae. The venation of their wings is more similar to that of the mydas flies of the Mydidae, but they differ from most mydids in having shorter antennae and the regular triangle of three round ocelli on top of the head (Woodley 2009).

Observations of Apiocera species have been fairly few. A study of North American species by Toft & Kimsey (1982) found them to be restricted to sandy habitats with a fair amount of subsurface moisture, such as the shores of lakes and rivers or among sand dunes. The larvae, so far as we know, are similar to those of robber flies and are probably burrowing predators in the sand. Adults emerge from holes in the ground late in the growing season. In some places (such as Wikipedia), you may find Apiocera referred to as 'flower-loving flies' but visits to flowers are few. Toft & Kimsey (1982) found that the species they observed emerged after most plants had finished flowering and, indeed, questions have been raised historically as to whether adult Apiocera feed at all. Nevertheless, they may take honeydew from plant-sucking insects, and I will direct you to the photo below by Jean & Fred Hort that seems to show at least one Apiocera individual feeding at a flower. Males may congregate at certain locations, seemingly to form leks, though it is unclear whether they maintain territories. Toft & Kimsey (1982) noted that tussels between males of A. hispida were common, observing that "two males would make rapid contact in mid-flight, and stay together in a buzzing, tumbling ball for several seconds".


There seems to be little question that Apiocera and mydas flies are closely related. In fact, an analysis of Apiocera's phylogenetic relationships by Yeates & Irwin (1996) lead to a number of other genera that had previously been classified with Apiocera in the family Apioceridae being reassigned to the Mydidae (I suspect that it is the behaviour of these other 'apiocerids' that is behind the erroneous association of Apiocera with the 'flower-loving' moniker). Apioceridae is still maintained as a distinct family for Apiocera alone but, as noted by Woodley (2009), one could be forgiven for questioning whether Apiocera would be better treated as a very basal mydid. But that, of course, is simply a question of categories.

REFERENCES

Toft, C. A., & L. S. Kimsey. 1982. Habitat and behavior of selected Apiocera and Rhaphiomidas (Diptera, Apioceridae), and descriptions of immature stages of A. hispida. Journal of the Kansas Entomological Society 55 (1): 177–186.

Woodley, N. E. 2009. Apioceridae (apiocerid flies). In: Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley & M. A. Zumbado (eds) Manual of Central American Diptera vol. 1 pp. 577–578. NRC Research Press: Ottawa.

Yeates, D. K., & M. E. Irwin. 1996. Apioceridae (Insecta: Diptera): cladistic reappraisal and biogeography. Zoological Journal of the Linnean Society 116: 247–301.

The Running of the Crabs

There are many varieties of spider in the world that, while not necessarily uncommon, tend to be little known to the general public owing to their cryptic and retiring nature. As an example, meet the genus Philodromus.

Philodromus cespitum, copyright R. Altenkamp.


Philodromus is the largest genus recognised in the family Philodromidae, commonly referred to as the running crab spiders or small huntsman spiders. About 250 species have been assigned to this genus from various parts of the world (Muster 2009), mostly in the Holarctic region. Like the huntsman spiders of the Sparassidae and the crab spiders of the Thomisidae, philodromids are an example of what old publications often referred to as 'laterigrade' spiders, in which the legs are arranged to extend sideways from the body more than forwards and backwards. They have eight eyes arranged in two recurved rows of four. Philodromids differ from crab spiders in having scopulae (clusters of hairs that can look a bit like little booties) on the leg tarsi, and having secondary eyes that lack a tapetum (reflective layer). They differ from huntsmen in that the junction between the tarsi and metatarsi is restricted to movement in a single plane, rather than the tarsus being able to move freely (Jocqué & Dippenaar-Schoeman 2007). Philodromids do not build a web to capture prey but instead seize prey directly.

The distinction between Philodromus and other genera in the family has historically been imprecise (Muster 2009) which goes some way to explaining the large number of species it has encompassed. In general, though, the eye rows of Philodromus are relatively weakly recurved, and its body form is less slender than that of the genera Tibellus and Thanatus. These may well be primitive features for the family, and a phylogenetic analysis of philodromids by Muster (2009) indicated that at least one group of species historically included in Philodromus (the P. histrio group) may be more closely related to the slender-bodied genera. The great French arachnologist Eugene Simon recognised several species groups in Philodromus, distinguished by features such as eye arrangement and leg spination, but recent authors feel that the status of these groups requires further investigation before we could consider treat?ing them as distinct genera.

Philodromus dispar, copyright Judy Gallagher.


Most species of Philodromus live on vegetation, flattening themselves against stems and foliage to avoid detection. As with other laterigrade spiders, the arrangement of their legs allows for rapid sideways movement, perfect for avoiding predators or turning up where prey do not expect them. At least one species group found in the Mediterranean region (including P. pulchellus and its relatives) differs in being ground-living, with a predilection for salt flats (Muster et al. 2007). Bites to humans from Philodromus appear to be vanishingly rare: a report on such a bite by Coetzee et al. (2017) appears to be the first record of one (the bite was painful, causing swelling and some ulceration, but without long-term effects following treatment). Philodromus species are much more likely to have a net positive value to humans, as they may act as control agents for insect pests among crops and orchards.

REFERENCES

Coetzee, M., A. Dippenaar, J. Frean & R. H. Hunt. 2017. First report of clinical presentation of a bite by a running spider, Philodromus sp. (Araneae: Philodromidae), with recommendations for spider bite management. South African Medical Journal 107 (7): 576–577.

Jocqué, R., & A. S. Dippenaar-Schoeman. 2007. Spider Families of the World. Royal Museum for Central Africa: Tervuren (Belgium).

Muster, C. 2009. Phylogenetic relationships within Philodromidae, with a taxonomic revision of Philodromus subgenus Artanes in the western Palearctic (Arachnida: Araneae). Invertebrate Systematics 23: 135–169.

Muster, C., R. Bosmans & K. Thaler. 2007. The Philodromus pulchellus-group in the Mediterranean: taxonomic revision, phylogenetic analysis and biogeography (Araneae: Philodromidae). Invertebrate Systematics 21: 39–72.