Field of Science

Dealing with a Clingy Male

Diving beetles of the family Dytiscidae are a distinctive component of the freshwater environment in most regions of the world. They have an oval, streamlined body form and powerful hind legs, usually with fringes of stiff setae, that are ill-suited for movement on land but make them adept swimmers. They are also almost always capable fliers, allowing them to find their way to water bodies of any size from large lakes to small, temporary pools. Both adults and larvae are active hunters, preying on other aquatic arthropods or even small vertebrates. Most diving beetles are fairly dull in coloration but exceptions are found among members of the tribe Aciliini.

Sunburst diving beetle Thermonectus marmoratus, from Insectarium de Montréal, René Limoges.


Members of the Aciliini are moderately sized diving beetles, generally between one or two centimetres in length. Dorsally they have a yellow to red base coloration with contrasting dark markings. The hind legs are robust with the hind tibia short and broad. Males have the base of the tarsus of the front legs broadened into a round palette with setae on the underside modified into sucking discs, used to hang onto the females when mating; this discs may be present on the tarsus of the mid pair of legs as well. They are strong swimmers, often venture=ing into the open waters of lakes and pools, and contrast with other diving beetles in that they may be found in pools lacking submerged vegetation (Roughley & Larson 2001; Bergsten & Miller 2006). Larvae have a distinctive arched body shape with a small head (Bukontaite et al. 2014), kind of shrimp-like, and also tend to be more pelagic than the larvae of other diving beetles. Females have gonocoxae (the appendages at the end of the abdomen that function as the ovipositor) that are relatively long with a broadened, spoon-like ending (Miller 2001); these are used to insert eggs into damp moss or under loose bark of vegetation lying just above the waterline. There is usually just one generation per year and adults in cold regions overwinter in larger water bodies that remain unfrozen.

Alternate morphs of female Graphoderus zonatus with granular (left) and smooth elytra, from Holmgren et al. (2016).


Perhaps the most intriguing aspect of aciliin diving beetles regards their sexual dimorphism. As noted above, males have a set of suckers on the fore legs for hanging onto females when mating. However, females of some species have sculpted elytra rather than the smooth elytra of males, such as a granular surface in Graphoderus species or long, setose sulci in female Acilius. The uneven surface produced by these features presumably functions to reduce the efficacy of the males' suckers, allowing the females more control when selecting a mate. That such a conflict exists is supported by the observation that the more developed the males' sucker arrays in a population, the more likely the females are to have repellent sculpturing. Males of some diving beetle species have been observed grabbing at any female they encounter, followed by the female swimming rapidly and erratically in an attempt to shake the male off or knock him off against the substrate or objects in the water (Miller 2003). Where this becomes really interesting is that some species have dimorphic females with some females in the population having sculpted elytra whereas others are smooth. What could be the reason for such variation? The presence of both forms in the population suggests that neither has a complete advantage over the other. It may be that smooth-backed females trade reduced defenses for improved swimming ability. Alternatively, a defensive female may be able to ensure that only the strongest and most resilient males can mate with her, but runs the risk of not mating at all if she never encounters a male who can overcome her defenses. A less defensive female may be more vulnerable to any male she encounters but at least she's bound to be fertilised at some point.

REFERENCES

Bergsten, J., & K. B. Miller. 2006. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae). Systematic Entomology 31: 145–197.

Bukontaite, R., K. B. Miller & J. Bergsten. 2014. The utility of CAD in recovering Gondwanan vicariance events and the evolutionary history of Aciliini (Coleoptera: Dytiscidae). BMC Evolutionary Biology 14: 5.

Holmgren, S., R. Angus, F. Jia, Z. Chen & J. Bergsten. 2016. Resolving the taxonomic conundrum in Graphoderus of the east Palearctic with a key to all species (Coleoptera, Dytiscidae). ZooKeys 574: 113–142.

Miller, K. B. 2003. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biological Journal of the Linnean Society 79: 359–388.

Roughley, R. E., & D. J. Larson. 2001. Dytiscidae Leach, 1815. In: Arnett, R. H., Jr & M. C. Thomas (eds) American Beetles vol. 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia pp. 156–186. CRC Press: Boca Raton.

Atropacarus

The little guy pictured above (photo copyright Scott Justis) is a representative of the box mite genus Atropacarus, members of which can be found in most parts of the world. Atropacarus is a genus of the Phthiracaroidea, a group of box mites characterised by the plates on the underside of body being relatively wide, in contrast to the narrow ventral plates of its sister group, the Euphthiracaroidea (members of which have featured on this site before: here and here). The difference in configuration of these plates reflects a difference in the way that the body is contracted to allow legs and prosoma to be withdrawn beneath the protective cover of the notogaster. In euphthiracaroids, the sides of the notogaster are contracted inwards; in phthiracaroids, the ventral plates of the body are lifted upwards (Schmelzle et al. 2015).

The classification of phthiracaroids is subject to conflict with two main systems in the recent literature. In one, championed by the Polish acarologist Wojciech Niedbała, the phthiracaroids are divided between two families with Atropacarus in the Steganacaridae. Species of Atropacarus have the surface of the notogaster extensively covered with dimples. The dorsal seta on the tibia of the fourth leg is short and closely associated with a solenidion (a type of specialised sensory hair). The setae of the genital plate are arranged in a more or less straight row along the inner margin of the plate with the fifth and sixth setae further apart than the fourth and fifth (Niedbała 1986). Niedbała divides Atropacarus between two subgenera. In Atropacarus sensu stricto, there are sixteen or more pairs of setae on the notogaster and the second adanal seta is moved inwards on the ano-adanal plate to form a more or less straight line with the anal setae. In Hoplophorella, there are fifteen pairs of setae on the notogaster and the second adanal seta is distinctly laterally placed relative to the anal setae.

The super-hairy Atropacarus niedbalai, from Liu & Zhang (2013). Scale bar = 100 µm.


In the competing system, used for instance by Subías (2019), Atropacarus and Hoplophorella are treated as distinct genera and each is in turn divided into subgenera by the number of setae on the ano-adanal plate. To a certain extent, of course, the question of whether to treat Atropacarus and Hoplophorella as genera or subgenera is arbitrary. Nevertheless, this arguably cosmetic distinction does relate to an underlying difference in theory. The classification of phthiracaroids used by Subías (2019) is a largely diagnostic one, inspired by a desire to facilitate specimen identifications. Niedbała's classification, in contrast, is intended to reflect phylogenetic relationships. Simple setal counts may be convenient when composing keys but one might question its overall phylogenetic significance. Neotrichy (increases in setal count by multiplication of the original setae) is not uncommon in phthiracaroids, particularly on the notogaster. Setal counts may vary between individuals of a single species and overall neotrichy reaches an extreme in the New Zealand species Atropacarus niedbalai. In this species, the basic count of fifteen or sixteen pairs of notogastral setae has been increased to 109 or 115 pairs, with further neotrichy on the prodorsum and ventral plates (Liu & Zhang 2013). Subías (2019) defends his choice of classification by arguing that Niedbała's key features are often difficult to discern. I sympathise with the difficulty but, as a wise man once said, species are under no obligation to evolve with regard to the convenience of taxonomists.

REFERENCES

Liu, D., & Z.-Q. Zhang. 2013. Atropacarus (Atropacarus) niedbalai sp. nov., an extreme case of neotrichy in oribatid mites (Acari: Oribatida: Phthiracaridae). International Journal of Acarology 39 (6): 507–512.

Niedbała, W. 1986. Système des Phthiracaroidea (Oribatida, Euptyctima). Acarologia 27 (1): 61–84.

Schmelzle, S., R. A. Norton & M. Heethoff. 2015. Mechanics of the ptychoid defense mechanism in Ptyctima (Acari, Oribatida): one problem, two solutions. Zoologischer Anzeiger 2015: 27–40.

Subías, L. S. 2019. Nuevas adiciones al listado mundial de ácaros oribátidos (Acari, Oribatida) (14a actualización). Revista Ibérica de Aracnología 34: 76–80.

The Font of the Placentals

The large-scale incorporation of molecular data into phylogenetics over the last few decades has caused a revolution in our understanding of life's evolution. Taxa whose interrelationships were previously regarded as intractable have been opened up to study, and many of our previous views on relationships have been forced to shift. Because conflict always makes for a good story, certain cases of the latter have become causes celebres, receiving extensive attention in both the technical and popular literature. One of these subjects of particular interest, not surprisingly, involves the relationships of the living orders of mammals.

Reconstruction of Arctostylops steini by Brian Regal, from Janis et al. (1998). The arctostylopids are a Palaeocene to Eocene group of mammals of uncertain affinities but probably belonging somewhere in the Boreoeutheria.


A lot of this attention has focused around the revelation of the Afrotheria, a grouping of animals (tenrecs, elephant shrews, hyraxes, aardvarks, elephants and manatees) with likely African origins that was completely unsuspected by studies based on morphological data only but which molecular studies have identified with ever-increasing levels of support. Recent molecular studies of placental phylogeny have agreed on three basal divisions within the placental mammals: the Afrotheria, the Xenarthra (armadillos, anteaters and sloths, a grouping that was recognised even before the advent of molecular data), and the remaining placentals in the largest of the three, the Boreoeutheria.

To the best of my knowledge, the Boreoeutheria is a clade that has also so far been supported by molecular data only with no morphological features yet recognised as defining the group. Nevertheless, its support can be considered as well established. The name Boreoeutheria refers to the clade's likely northern origins in contrast to the more southern distribution of the other two. Within the Boreoeutheria, molecular studies indicate a basal divide between the Euarchontaglires on one side and the Laurasiatheria on the other. The Euarchontaglires include the primates and rodents (as well as a handful of smaller orders). The Laurasiatheria include the Eulipotyphla, a group of insectivorous mammals including shrews, moles and hedgehogs, as sister to a clade containing bats, carnivorans, perissodactyls and artiodactyls.

Molecular phylogeny of mammals, from Springer et al. (2004) (note that not all branches shown in this tree are supported by all studies).


This all has interesting ramifications for the early evolution of placentals. There is an extensive fossil record of mammals from the Palaeocene, the epoch of time immediately following the end of the Cretaceous. However, most of these mammals do not belong to the orders alive today and their exact relationships to living mammals remain open to debate. The molecule-induced shake-up of pacental relationships just increased this uncertainty: for instance, the interpretation of a given group of fossil mammals as close to the common ancestry of perissodactyls and elephants rather goes out the window when perissodactyls and elephants are no longer thought to be closely related. And detailed studies that may resolve these issues remain few and far between. One of the most notable analyses in recent years has been that by Halliday et al. (2017) which covered most of the well-preserved placentals and their close relatives from the Cretaceous and Palaeocene periods. However, it is difficult to say just what to make of their results. The unconstrained analysis of their data presents results that remain deeply inconsistent with the molecular tree. Conversely, constraining the analysis to more closely match the molecular data provides results that are intriguing but difficult to accept at face value; I suspect they may be artefacts of the algorithm forcing taxa into the least unacceptable position for inadequate data. Suggesting that pangolins are the last specialised survivors of a broad clade of condylarths, pantodonts, notoungulates and creodonts is... I suppose not a priori impossible, but definitely a big call. A later analysis based on an expanded version of the same data set by Halliday et al. (2019) irons out some of the kinks but still fails to resolve the base of the Boreoeutheria beyond a massive polytomy of 25 branches (an icosipentatomy?). The Euarchontaglires are recovered as a clade but not the Laurasiatheria or any of its molecular subgroups above the ordinal level. And while some of the newer analysis' placements may seem like an improvement (notoungulates are placed as the sister to litopterns instead of hanging out with pangolins), others may still raise an eyebrow (mesonychids are associated with carnivorans but viverravids and miacids are not).

As always, the best answer to this conundrum is likely to involve more research. While researching this post, I did come across comments from people suggesting issues with the Halliday et al. data. Frankly, for a data set of this size (involving 248 taxa and 748 characters in the 2019 paper), it would be incredible were it otherwise. I know from my own experience that as you add more characters and taxa to a phylogenetic analyses, the challenge of keeping everything in line rises exponentially, and the data sets I've dealt with have been nowhere near the size of this one. Nevertheless, it's a start. And we can but hope that even those who find fault with it ultimately take it as inspiration to themselves do better.

REFERENCES

Halliday, T. J. D., M. dos Reis, A. U. Tamuri, H. Ferguson-Gow, Z. Yang & A. Goswami. 2019. Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proceedings of the Royal Society of London Series B—Biological Sciences 286: 20182418.

Halliday, T. J. D., P. Upchurch & A. Goswami. 2017. Resolving the relationships of Paleocene placental mammals. Biological Reviews 92 (1): 521–550.