Field of Science

Showing posts with label Thecostraca. Show all posts
Showing posts with label Thecostraca. Show all posts

Most Unbelievable Organisms Evah!

Last week I asked for nominations for the title of Most Incredible Organism Ever. Thank you very much to those of you who responded with your selections. Some of them were organisms I'd already selected myself, some of you reminded me of amazing organisms that were even better than the ones that I'd considered*. Certainly, getting the list down to ten top nominations was not easy, and I'm sure anyone else would have chosen differently from myself. Allen Hazen pointed out that, strictly speaking, "incredible" means "inspires disbelief", and certainly some of the things I have lined up do exactly that.

*As an aside, something that never fails to amuse is looking up what Google search terms have brought people to Catalogue of Organisms. Trust me, "amazing organism" is bound to bring in the punters.

Honorable mentions should be given to those organisms that people nominated that I didn't end up using, because they're certainly all incredible. Allen Hazen suggested the platypus, while Alan nominated the aye-aye. Dave Coulter was all for the Osage orange, while Amie Roman asked me to "pick an onychophoran, any onychophoran".

But I'm afraid I ended up passing over these wonders. In no particular order, here are my nominations for "Most Incredible Organism" (click on the pictures to be taken to their source):



Homo sapiens Linnaeus, 1758: Both myself and Mike Keesey agreed on this one. As much as I hate to stoke this species' notoriously smug satisfaction, it has to be admitted that humans are pretty amazing. Douglas Adams once explained that "The History of every major Galactic Civilization tends to pass through three distinct and recognizable phases, those of Survival, Inquiry and Sophistication, otherwise known as the How, Why and Where phases. For instance, the first phase is characterized by the question How can we eat? the second by the question Why do we eat? and the third by the question Where shall we have lunch?" As far as we know, Homo sapiens is the only species on this planet to have reached Adam's second stage, let alone the third.



Polyascus polygenea (Lützen and Takahashi, 1997): Polyascus polygenea is a member of the Rhizocephala, notorious crustacean parasites of crabs. The larval rhizocephalan looks very similar to the larva of a barnacle (to which it is closely related), but when it finds a decapod host it burrows in and transforms into an almost fungus-like mass spreading through the hosts body. The only externally visible part of the parasite is its large egg-sac (the orange tube in the picture above, which does not show a Polyascus but another rhizocephalan species, Peltogaster paguri). The rhizocephalan egg-sac grows at the base of the crab's tail, where it would normally hold its own eggs. In order to make sure this spot is free, the rhizocephalan chemically castrates its host, preventing it from ever reproducing. It also affects its host's behaviour so that the crab lovingly tends the parasite's egg-sac as if it were its own. So powerful is the parasite's mental ju-ju that even male hosts that would not naturally produce eggs will tend the parasite just as a female would.

Vasha nominated the best-known rhizocephalan, Sacculina carcini, but I've decided to go with Polyascus polygenea because this species adds a further twist to the tale. A single Sacculina larva will give rise to a single egg-sac. But Polyascus reproduces within the host asexually by budding, so that one larva will give rise to multiple egg-sacs (Glenner et al., 2003).

Polyascus is also acting as the stand-in for all mind-controlling parasites. As we learn more about the natural history of parasitic organisms, it turns out that behavioral control of parasites over their hosts is not uncommon. Parasitic wasps make caterpillars guard the wasp's cocoons. Horsehair worms make crickets drown themselves so the aquatic adult worm can emerge. Tanya reminded me about Cordyceps unilateralis, a fungal parasite of ants that, when it's ready to produce spores, makes its host climb to the highest available point so that the spores will spread as far as possible. The ways of parasites are disturbing. And speaking of disturbing...



Acarophenax tribolii Newstead & Duvall, 1918: It is not uncommon for pregnant women to express delight at feeling their baby kick inside them. But what if it was doing more than just kicking? Mites of the genus Acarophenax are parasites of beetles that can claim to have perhaps the just-plain-ickiest life history of any animal. The sex ratio of this genus is highly skewed - depending on the species, a brood may contain up to thirty females, but usually only a single male. These offspring reach sexual maturity before they are even born, and the male proceeds to fertilise all of his sisters while still within their mother. In fact, the male doesn't even survive to become free-living - by the time the already-fertilised females emerge from their parent, the male has reached the end of his short (but extremely busy) lifespan. The advantage to the mite in this twisted incestuous life cycle? An exceedingly short generation time, of course - Acarophenax mahunkai, for instance, has a generation time of only three to five days (Steinkraus & Cross, 1993).



Mites of the closely related family Pyemotidae have a similar life cycle - the offspring reach full sexual maturity while in their mother, and begin copulating the instant that they emerge from their proud parent. Females of Pyemotes herfsi (shown in the picture above), known as "itch mites" and facultative biters of humans, can produce more than 250 fully mature offspring.



Welwitschia mirabilis Hook.f.: I also have to thank Tanya for reminding me of the wonder that is Welwitschia. Welwitschia mirabilis is unique to the Namib Desert in Angola and Namibia, and is a member of the gymnosperm order Gnetales along with the genera Ephedra and Gnetum. The Gnetales have received a lot of attention due to their much-debated phylogeny (morphological characters suggest they are the living sister group to angiosperms, while molecular analyses place them closer to conifers), but that's not what's so amazing about Welwitschia. It's not even the bright pink, insect-pollinated cones. What makes this plant so incredible is the way it grows. Welwitschia mirabilis only ever produces two adult leaves, followed by the death of the plant's apical meristem (growing tip). The two strap-like leaves, however, continue to grow indefinitely, and can reach lengths of over eight metres (most individuals look like they have more than two leaves, but this is only because of the leaves splitting as the ends get frayed). Welwitschia is very slow-growing, and individual specimens can live to be hundreds, if not thousands of years old.



Argentinosaurus huinculensis Bonaparte & Coria, 1993: There's no other way to say it - sauropods were just stupidly huge. And Argentinosaurus was one of the most ridiculous of all, being the largest well-characterised sauropod (potentially outdone only by such almost-apocryphal taxa as Amphicoelias fragillimus and Bruhathkayosaurus matleyi). With an estimated total length of nearly thirty metres, and potential weight of up to 80 tonnes... well, there's nothing much that can be said in response except "Whoa".

Sauropods are so huge that when a popular blog was set up dedicated to them, the site authors couldn't fit in the entire animal and were forced to dedicate themselves to a single section. I refer, of course, to the famed Sauropod Vertebra Picture Of the Week - SV-POW!. Rumour has it, however, that a second site is in the works devoted to sauropod crania, to be called "Sauropod Heads - Anatomy, Zoology And Morphology".



Rhizanthella slateri (Rupp) M. A. Clem. & P. J. Cribb, 1984: Rhizanthella is a small genus of three orchid species unique to Australia. What makes Rhizanthella so amazing is that its entire life cycle is spent underground. The plant is saprophytic, dependent on an associated fungus for nutrition, and its stems are entirely subterrean. Even the flowers do not have to break the surface - they are pollinated by minute gnats that can reach them through tiny cracks in the covering litter. The first known Rhizanthella specimens were discovered in 1928 when they were brought up by a farmer's plough, and only intermittent finds were made for a long time afterwards. Even today, their obscure habits mean that Rhizanthella species are poorly known. Sad to say, they are also all regarded as endangered. They are only known from restricted, scattered ranges, limited by the presence of their associated fungus and the tree of which it is in turn connected to mycorrhizally (in Rhizanthella gardneri, the tree is Melaleuca uncinata, but the associations of Rhizanthella slateri are still unknown).

Vasha reminded me of Rhizanthella by telling me of the American saprophytic plant Thismia americana, which also spends most of its life underground with only the minute flowers emerging above the surface. Thismia americana has not been recorded since 1916, and is feared to be extinct, though it is hard to know for certain. As described at the link, an intensive search in the early 1990s failed to find any specimens, but a concurrent dummy run using scattered white beads about the same size as T. americana flowers was also a failure.



Puccinia monoica Arthur, 1912: The object of the photo above is not a flower. It grew from a flowering plant, but it's not a flower. Puccinia monoica is a fungus parasitic on Brassicaceae (mustard) species. Like rhizocephalans on their crabs, Puccinia monoica changes the reproductive biology of its host, preventing it from growing its own flowers. Instead, it makes the host plant grow a tight whorl of leaves, which are covered by the bright yellow sporangia of the fungus. Not only does the fungus-induced 'false flower' look like a real flower, it even produces nectar and scent like a real flower, attracting insect pollinators just like a real flower would (Raguso & Roy, 1998). And just like pollen from a real flower, these pollinators carry spores from fungus to fungus, cross-fertilising the fungi as they do so.



Deinococcus radiodurans (ex Raj et al. 1960) Brooks and Murray 1981: A dose of radiation of 10 joules per kilogram will kill a human being. Sixty joules per kilogram will kill Escherichia coli. Deinococcus radiodurans may look like a fairly unremarkable bacterium at first glance, but it can withstand a radiactive dose of 5000 joules per kilogram and not even blink (that is, if it had eyes they wouldn't blink). It can withstand radiation so strong that its genome is simply blasted to pieces, stoically knitting the fragments back together again afterwards. Deinococcus can withstand extreme heat, extreme cold, and strong acidity. In a pun so bad that it demands to be repeated, this organism has been dubbed Conan the Bacterium. Pavlov et al. (2006) went so far as to suggest that Deinococcus' incredible resilience to radiation indicated an extraterrestrial origin, carried from Mars on an asteroid, but it seems more likely to be a by-product of resilience to other stressors such as desiccation (Cox & Battista, 2005). Still, one can't help wondering if, even if it didn't come from Mars in the first place, it has managed to make it over there on one of Earth's probes.

So resistant is Deinococcus to everything possibly imaginable, in fact, that we still have no idea where it lives naturally. It was first isolated from cans of irradiated beef, and has not yet been found to be abundant in any particular environment. Phylogenetically, Deinococcus forms a clade with the thermophilic bacterium Thermus (one species of which, Thermus aquaticus, is of enormous significance to molecular biology as the source of the Taq enzyme used in PCR). This clade is most commonly referred to (rather unimaginatively) as the Deinococcus-Thermus group, but I personally prefer the name given to them by Cavalier-Smith (2002) - Hadobacteria, the bacteria of Hades.



Proteus anguinus anguinus Laurenti, 1768: The white olm, the only truly cave-dwelling tetrapod (the closely related black olm, Proteus anguinus parkelj, is a surface-dweller). [Update: Much to my chagrinn, Nick Sly has reminded me that there are other cave-dwelling salamanders out there.] I've included the olm not only for its own sake, but as a representative of the entire world of troglobitic and stygobitic fauna (troglobitic animals are those that live in actual caves while stygobitic taxa live buried in the ground, usually in aquifers). In this strange, silent world, animals are almost entirely dependent on food particles washing down from the surface, so life underground is slow, and patient. Troglobites can go for incredible amounts of time without eating - Darren Naish informs us of an olm that was supposedly kept at the Faculty of Biotechnology in Ljubljana without food for twelve years! If that is what a large, complex vertebrate is capable of, imagine what is possible for the smaller invertebrates with their lower metabolic requirements.

And last, but certainly not least:



Wasmannia auropunctata (Roger, 1863): Commonly known as the little fire ant or electric ant (the latter name has been promoted in recent years to dissuade confusion with the larger, not closely related fire ants of the genus Solenopsis), Wasmannia auropunctata is regarded as one of the world's worst invasive organisms. It has been linked with decreases in biodiversity in locations to which it has been introduced, and has a painful sting to boot. It also has one of the world's most remarkable reproductive systems (Fournier et al., 2005). Like other ants, Wasmannia has both haploid males and diploid females, with the females divided between reproductive queens and non-reproductive workers. Genetically, though, Wasmannia is a little different from other ants. While males appear to mate with queens the normal way, only workers are produced by male fertilisation. Any new queens that are produced are genetically identical to their mothers. Still, the male lineage doesn't disappear - somehow, the male genes are able to eliminate the female genes from some of the eggs, and the resulting male Wasmannia are genetically identical to their fathers.

Wasmannia is one of very few organisms that exhibit androgenesis - clonally reproducing males. The only other known natural habitual cases are a cypress species, Cupressus dupreziana, and freshwater bivalves in the genus Corbicula, though odd cases of androgenesis have been recorded in laboratory and cultivated organisms (Hedtke et al., 2008). Effectively, the male and female Wasmannia are reproductively isolated from each other - they are separate species.

REFERENCES

Cox, M. M., & J. R. Battista. 2005. Deinococcus radiodurans — the consummate survivor. Nature Reviews: Microbiology 3 (11): 882–892.

Fournier, D., A. Estoup, J. Orivel, J. Foucaud, H. Jourdan, J. Le Breton & L. Keller. 2005. Clonal reproduction by males and females in the little fire ant. Nature 435: 1230-1234.

Glenner, H., J. Lützen & T. Takahashi. 2003. Molecular and morphological evidence for a monophyletic clade of asexually reproducing Rhizocephala: Polyascus, new genus (Cirripedia). Journal of Crustacean Biology 23: 548-557.

Hedtke, S. M., K. Stanger-Hall, R. J. Baker & D. M. Hillis. 2008. All-male asexuality: origin and maintenance of androgenesis in the Asian clam Corbicula. Evolution 62 (5): 1119-1136.

Pavlov, A. K., V. L. Kalinin, A. N. Konstantinov, V. N. Shelegedin & A. A. Pavlov. 2006. Was Earth ever infected by martian biota? Clues from radioresistant bacteria. Astrobiology 6 (6): 911-918.

Raguso, R. A., & B. A. Roy. 1998. 'Floral' scent production by Puccinia rust fungi that mimic flowers. Molecular Ecology 7 (9): 1127-1136.

Steinkraus, D. C, & E. A. Cross. 1993. Description and life history of Acarophenax mahunkai, n. sp. (Acari, Tarsonemina: Acarophenacidae), an egg parasite of the lesser mealworm (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America 86 (3): 239-249.

Forcing Out the Secret


SEM of a y-cypris (Hansenocaris, Facetotecta), from Høeg & Kolbasov (2002).


A few months ago, I wrote a post on the mysterious y-larvae or Hansenocaris (Facetotecta), distinctive crustaceans known only from their larval form and of unknown adult morphology. I've just been informed of a significant step that has been taken towards solving this mystery (Glenner et al., 2008).

One way to discover the adult form of Hansenocaris would be to rear larvae through to adulthood. However, so far it has not been possible to rear y-larvae past the cypris stage (y-larvae belong to a group of crustaceans called Thecostraca, also including barnacles, that hatch out as a nauplius larva, which eventually transforms into a cypris larva, followed by other larval stages or adulthood). Glenner et al. have broken that barrier by exposing cypris y-larvae to the moulting hormone 20-hydroxyecdysone (20-HE). Exposure to this hormone induced the cyprids to moult through to the next stage in the life cycle.

The appearance of this next stage certainly goes some way to explaining why adult facetotectans have not yet been recognised. Gone are the swimming appendages and arthropod segmentation of the cypris. Instead, the y-larvae moults into a limbless, worm-like organism that wriggles vigorously. This worm-like creature is without a properly developed digestive system or other such extravagances, and about the only feature suggestive of its arthropodan nature are the disorganised and degenerate remnants of a pair of compound eyes. Overall, the emerged organism (dubbed an "ypsigon" by Glenner et al.) bears a significant resemblance to the vermigon larva described for some members of another group of the Thecostraca, the parasitic Rhizocephala. Ypsigons kept in culture for 24 hours underwent another moult (remaining as an ypsigon), but no specimens were kept alive beyond that stage. I am inclined to wonder whether the laboratory-induced form is truly the same as what would emerge in the wild or whether the growth hormone adversely affected the larvae's development, but Glenner et al. do indicate that rhizocephalan vermigons induced in the lab are comparable to those occurring naturally.


Emerged ypsigon next to its moulted cypris cuticle. From Glenner et al. (2008).


Loss of derived arthropod characters is not uncommon among endoparasitic crustaceans - the Rhizocephala and Pentastomida are two particularly extreme examples, and certain features of the y-larvae cypris had already lead researchers to suspect that the adult might be parasitic. Unfortunately, it is still unknown what the host of that parasitic adult might be. It is also worth stressing that, contrary to what has been implied on news releases, the ypsigon is not the adult, but an additional larval stage, probably (by analogy with the rhizocephalan vermigon) representing the stage at which the y-larva enters its host. Identification of the full adult form (which may or may not resemble the vermigon) will probably require the identification of that host. Despite the similarities between the facetotectan ypsigon and the rhizocephalan vermigon, the two groups are not believed to be each other's closest relatives within the Thecostraca (Facetotecta are a basal branch, while Rhizocephala are closer to barnacles - Høeg & Kolbasov, 2002), suggesting that this derived parasitic form has developed independently in the two groups. We eagerly await any discovery that will reveal the final clue to this mystery and present with a fully adult facetotectan in all its slimy glory.

REFERENCES

Glenner, H., J. T. Hoeg, M. J. Grygier & Y. Fujita. 2008. Induced metamorphosis in crustacean y-larvae: Towards a solution to a 100-year-old riddle. BMC Biology 6: 21.

Høeg, J. T., & G. A. Kolbasov. 2002. Lattice organs in y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca. Acta Zoologica 83: 67-79.

The Secret of Y-Larvae

Deep Sea News has some neat pictures of a rhizocephalan for you to look at. Rhizocephalans are definitely one of the stranger parasitic crustaceans, with an almost fungal-looking structure that spreads through their crustacean host, and its machiavellian hijacking of the host's reproductive system for its own ends. Seriously, take a look, though you may want to wait a little if you've just had breakfast.



Rhizocephalans are actually fairly close relatives of barnacles, both of them belonging to a group of crustaceans called Thecostraca. Though the different thecostracan subgroups are very different in adult morphology, they are united by their similar larval morphology. As well as the standard crustacean nauplius larva, thecostracans have an additional larval stage known as a cypris larva, a motile stage with specialised sensory structures that the larva uses to seek out a suitable host or substrate to attach to and develop into the adult. As well as barnacles and rhizocephalans, the Thecostraca includes another few small crustacean groups, the Ascothoracida, the Acrothoracica, and the Facetotecta. Acrothoracica or burrowing barnacles burrow into hard substrates such as mollusc shells, other free-living barnacles, corals or limestone. Ascothoracida are minute parasites of molluscs and other marine animals. But I thought I'd reply to Deep Sea News' post by writing something on the last group, the Facetotecta.

The infraclass (or subclass, or whatever you want to call it) Facetotecta contains a single genus, Hansenocaris. Despite being discovered well over a hundred years ago, Hansenocaris remains, in many regards, very little known. The main thing we don't know about Hansenocaris is what it actually looks like. So far, this group of thecostracans is known only from distinctive larvae referred to as "y-larvae"* - the adult form is a complete mystery. The most distinctive feature of the y-larva is its large univalved head shield, whose faceted nature is the source of the name "Facetotecta". Both nauplius and cypris stages have been collected and well-studied, but that's as far as it goes (the photo above, from Høeg & Kolbasov, 2002, shows an SEM of a y-cypris). Certain features of the cypris larva's morphology suggest that, like most other thecostracan subgroups, Hansenocaris becomes parasitic at maturity (as I noted in a comment at Deep Sea News, the non-parasitic barnacles are actually the odd ones out here), but no-one knows on what.

*Why "y-larvae"? That I couldn't tell you, but according to Ponomarenko (2006) the name dates back to their original description by Hansen in 1899.

One suggestion that has been made is that y-larvae may fit into the little-known sexual phase of the life cycle of the Tantulocarida (Ponomarenko, 2006). Tantulocarids are another group of ectoparasitic crustaceans (living on other crustaceans) that are believed to be the sister group of the thecostracans, and are another group of animals that contend for the title of "almost too stupidly bizarre to be believable". The tantulocarid life cycle is unique in lacking the usual moulting stages of all other crustaceans - instead, the mature adult actually develops within the attached parasitic tantulus larva (Boxshall & Lincoln, 1997). Check out the diagram below from Boxshall & Lincoln (1997) showing this process. Personally, I have a hard time thinking of this as development from larva to adult (despite all the papers describing it as such) - it looks more like a reproductive process where the adult develops asexually by a sort of internal budding from the tantulus. Reproduction in tantulocarids is either asexual or sexual (Huys et al., 1993) - in the asexual phase, the tantulus larva swells into a sac filled with developing eggs that are believed to be retained to hatch out into fully-developed tantulus larvae. In the sexual phase, as shown, the larva gives rise to a single mature adult. What happens once the mature male is released into the world is unknown, but as the male lacks functional mouthparts it undoubtedly dies after finding a mate. The sexual female described by Huys et al. (1993) was still attached to the host via the umbilicus, the nutrient-delivering tube you can see in fig. 26 below, and it seems possible that it remains so attached for all or most of its life, continuing to draw nutrients from the host to nurse its developing eggs. Huys et al.'s female, unfortunately, was carrying only immature eggs, so whether the eggs are retained to the tantulus stage as in the parthenogenetic phase, or hatch into more standard nauplius larvae, remains unknown.



This period of ignorance does give a window for identifying y-larvae with tantulocaridans. The idea is also not without phylogenetic merit - tantulocaridans are regarded as the sister group to Thecostraca, while most phylogenetic analyses place Facetotecta as fairly basal thecostracans. However, the identification does not seem to be well-accepted*. Most significantly, the tantulus larva of Tantulocarida has no sign of lattice organs. Lattice organs are specialised sensory organs on the carapaces of thecostracan cypris larvae, including y-larvae, that are believed to function in helping the cypris find a suitable substrate for attachment** (Høeg & Kolbasov, 2002). It would be surprising if sexually-produced dispersing larvae of tantulocaridans were to possess lattice organs but asexually-produced dispersing larvae (that surely would have just as much use for them) did not.

*Google Books can be very frustrating. The Google Book preview for Scholtz (2004) allows me to read that "there are strong arguments against a tantulocaridan-facetotectan relation" at the end of page 209, but then page 210, where I would have undoubtedly been told about said arguments, is not part of the preview. Gah!

**However, Lange & Schram (2002) identified apparent sensory structures on the carapace of fossil thylacocephalans as possibly homologous to lattice organs, despite the believed free-living nature of thylacocephalans. Mind you, the strange morphology of Thylacocephala was so highly derived that it's pretty much anyone's guess just what they were up to.

Which brings us firmly back to square one. The adult form of Hansenocaris remains one more example of just how little we know of the marine environment. It's out there somewhere - the question is where.

REFERENCES

Boxshall, G. A., & R. J. Lincoln. 1987. The life cycle of the Tantulocarida (Crustacea). Philosophical Transactions of the Royal Society of London Series B - Biological Sciences 315 (1173): 267-303.

Høeg, J. T., & G. A. Kolbasov. 2002. Lattice organs in y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca. Acta Zoologica 83: 67-79.

Huys, R., G. A. Boxshall & R. J. Lincoln. 1993. The tantulocaridan life cycle: the circle closed? Journal of Crustacean Biology 13 (3): 432-442.

Lange, S., & F. R. Schram. 2002. Possible lattice organs in Cretaceous Thylacocephala. Contributions to Zoology 71 (4): 159-169.

Ponomarenko, E. A. 2006. Facetotecta - unsolved mystery of marine biology. Russian Journal of Marine Biology 32 (Suppl 1): S1-S10.

Scholtz, G. 2004. Evolutionary Developmental Biology of Crustacea. CRC Press.

Reference Review: Barnacles among the Coral



Blogging on Peer-Reviewed ResearchAnderson, D. T. 1992. Structure, function and phylogeny of coral-inhabiting barnacles (Cirripedia, Balanoidea). Zoological Journal of the Linnean Society 106: 277-339.

Barnacles are among the oddest animals on the planet. Genealogically speaking, they're crustaceans, but with such a highly derived morphology that, except for the jointed cirri (actually derived legs), you'd be hard pressed to find an obvious character marking them as such. Much is made of how barnacles spend their lives functionally upside-down (the legs are protruded out to filter food particles from the water, after which they are funneled downwards towards the mouth), their enviable reproductive organs, and how much pain a patch of them can cause while walking below the high-tide mark on a rocky coast. The most familiar barnacles are the rock-inhabiting pyramidal forms, but others seek out different habitats.

Barnacles living on corals have been assigned to three families, the entirely coral-living Pyrgomatidae, the genus Armatobalanus in the Archaeobalanidae and the genus Megabalanus in the Balanidae, but Anderson (1992) agrees with previous authors that the Pyrgomatidae and Armatobalanus form a single clade, with Armatobalanus representing the more ancestral form from which the more specialised Pyrgomatidae originated (the photo at the top of the page, from here, shows the opening of the pyrgomatid Nobia grandis with the cirri extended). Armatobalanus has a wall constructed of six plates as in other families of barnacle, while Pyrgomatidae show a trend towards fusion of the wall plates, with at most four and sometimes a single plate in the wall. The range of variation from more generalised to more specialised forms seen by Charles Darwin during his major revision of the world's barnacles was a significant factor in confirming Darwin's acceptance of the concept of transmutation of species, and the Pyrgomatidae are no exception. Coral-inhabiting barnacles run the gamut, from taxa that are merely resident on the coral and have a fairly typical barnacle morphology such as Armatobalanus, to the derived Hoekia monticulariae with fused opercular plates, vestigial cirri and enlarged mouthparts that feeds directly on the coral overgrowing it.

The greatest threat to any coral-living animal is being overgrown by the coral itself. In Armatobalanus, this is prevented using purely mechanistic means - as the cirri are extended from the aperture, they actively scrape away any overgrowing coral, and enlarged maxillipeds that also protrude from the aperture flick away the resulting debris. In the Pyrgomatidae, a frill has developed that protrudes from the aperture when open on either side of the cirri, and probably secretes a growth inhibitor that excludes the coral (the presence of some sort of chemical defense is indicated by the fact that dead barnacles are rapidly overgrown). Some species of the less derived pyrgomatid genus Cantellius, while possessing the apertural frill, also retain the teeth on the cirri and enlarged maxillipeds of Armatobalanus species. More derived pyrgomatid species show a trend towards reduction in size of the aperture, which Anderson (1992) suggests may be because that reduces the size of the perimeter the barnacle needs to keep clear of coral. The downside of aperture reduction is that it requires some degree of reduction in the size of the cirral fan, and hence reduces feeding efficiency. It has long been suggested that at least some pyrgomatids may compensate for the reduced feeding ability through some degree of parasitism from the host coral, either through tissue feeding or absorption of dissolved nutrients. While many species do show a trend towards weakening of or the development of pores in the basal shell or membrane separating the barnacle from its host (and this basis is completely lost in Hoekia), direct evidence for parasitism in genera other than Hoekia is slight. No evidence of nutrient transfer was found in a study of Newmania milleporum, but Anderson (1992) points out that Newmania is one of the more actively-feeding species, without a reduced basis, so is not one of the most likely candidates for parasitism anyway.



On the basis of morphology, Anderson (1992) suggested a phylogeny for the pyrgomatid subfamily Pyrgomatinae that placed the derived genera in three groups arising independently from the basal Cantellius, which was itself derived from Armatobalanus or an Armatobalanus-like ancestor. However, this phylogeny was not supported by the more recent molecular study by Simon-Blecher et al. (2007). In their phylogeny (shown above, from the paper - the drawings to the right of each taxon represent the arrangement of wall plates and the shape of the opercular plates), Armatobalanus is actually nested within the pyrgomatids (and one "pyrgomatid" genus, Wanella, seems to actually be a convergent member of the Balanidae). If the phylogeny of Simon-Blecher et al. (2007) is correct, then there appears to have been a fair degree of homoplasy in the fusion of the wall plates from the ancestral six retained in Armatobalanus. The most interesting possibility suggested to me by the molecular phylogeny, however, is that the mechanistic method of coral exclusion of Armatobalanus, rather than being ancestral, may actually be derived relative to the chemical inhibition method. Cantellius, the genus Anderson (1992) suggested retained relictual features of the mechanistic method, is sister in Simon-Blecher et al.'s (2007) tree to Armatobalanus, adding more credility to the idea that we should reverse our ideas of ancestral vs. derived.

REFERENCES

Simon-Blecher, N., D. Huchon & Y. Achituv. 2007. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis. Molecular Phylogenetics and Evolution 44 (3): 1333-1341.