Everyone knows about God's supposed inordinate fondness for beetles, but it is my opinion that the true poster children for insect diversity should be the wasps. Wasps, admittedly, do not have as many described species as beetles (there are some who suspect that the actual number of species of wasp may eventually be higher, but that remains in the realm of the hypothetical). However, many species of beetle are very difficult to distinguish except by skilled specialists, being otherwise small, brown, and conservative. Wasps, on the other hand, come in a kaleidoscopic array of colours and shapes, such that even a novice may look at an array of wasps (see the top of this post, for instance) and be immediately struck by the disparity.
The Chalcidoidea, commonly referred to as chalcids, are one of the largest subgroups of wasps, a clade of mostly small (often minute), mostly parasitoid wasps (some have larvae that feed on plants). Members of the Ormyridae, one of the commonly recognised families of chalcids, are generally about two to three millimetres long. Ormyrids are distinguished from other chalcids by their robust body form, with a strongly sclerotised gaster* (ormyrids and perilampids tend to look like steroid-abusing pteromalids). The segments of the gaster are usually ornamented by rows of coarse foveae (pits) that give it a distinctive rough appearance, though in some species these foveae are less obvious or are replaced by longitudinal ribs (Bouček 1988). Ormyrids are often recorded in association with plant galls, but are not gall-formers themselves: rather, they are parasites of the insect larvae that formed the galls (usually flies or other wasps). Some ormyrids are associated with figs and parasites of fig wasps.
*Wasp researchers generally refer to the sections of the body behind the head by terms such as 'mesosoma' and 'gaster' (or metasoma), rather than 'thorax' and 'abdomen'. This is because the section of the body that is the first segment of the abdomen in other insects has become the last segment of the mesosoma in Hymenoptera.
There are about 125 known species of ormyrid (making this a quite small family by chalcid standards) according to the Universal Chalcidoidea Database (an absolutely wonderful resource). However, there isn't yet a really good classification system within the family. Ormyrids vary to a fair degree, particularly in the form of the antennae or the ornamentation of the gaster, but most authors have placed almost all species within the single genus Ormyrus. Attempts to subdivide this diverse group (for instance, that of Doğanlar, 1991, who recognised four genera of ormyrids with three subgenera within Cyrtosoma) have suffered from not considering the full range of ormyrid diversity. Some of the Australian forms referred to by Bouček (1988), for instance, may not be placeable in Doğanlar's system. Until an appropriately large-scale review is conducted, most authors will probably continue to recognise an all-purpose Ormyrus.
REFERENCES
Bouček, Z. 1988. Australasian Chalcidoidea (Hymenoptera): A biosystematic revision of genera of fourteen families, with a reclassification of species. CAB International: Wallingford (UK).
Doğanlar, M. 1991. Systematic positions of some taxa in Ormyridae and descriptions of a new species of Ormyrus from Turkey and a new genus in the family (Hymenoptera, Chalcidoidea). Türkiye Entomoloji Dergisi 15 (1): 1-13.