Field of Science

Scheloribates

Over the years, I've put up several posts about the diversity of oribatid mites. It's time for another one.

Scheloribates laevigatus, copyright R. Penttinen.


One of the largest genera of oribatids out there is the genus Scheloribates, for which well over 200 species have been described. Their distribution is pretty much worldwide; they are found in a range of microhabitats, such as in leaf litter, in pastures or marshes, or among rocks. Distinguishing features of the genus from other oribatids include well-developed, immobile pteromorphs, tridactylous (three-clawed) legs, and a notogaster with ten pairs of setae and three pairs of sacculi (little sac-shaped glandular openings) (Ermilov & Anichkin 2014).

Considering their abundance in soil habitats, Scheloribates probably have a significant role to play in decomposition and nutrient cycling. Studies on the diet of one of the better-known species, S. laevigatus, have found that it will eat almost any type of vegetable or fungal matter, though its preferred diet is microscopic algae (Hubert et al. 1999). Indeed, they are most abundant in damper habitats that would provide good conditions for the growth of such algae.

Scheloribates species may impact on human lives in other ways too. They are an intermediate host for the larvae of anoplocephalid tapeworms that infect livestock when the mites are accidentally ingested during grazing. S. laevigatus is a known host for at least eight tapeworm species in North America. Rates of tapeworm infestation in Scheloribates can be quite high; over 60% of the individuals of one species at a particular locality in Australia were infected (Lee & Pajak 1990). Scheloribates species are also noteworthy as a likely source of the toxic alkaloids found in the skin of arrow-poison frogs. The alkaloids are likely to be synthesised by the mites (as suggested by their presence in adults but not in juveniles, despite no known difference in diet between the two life stages) and then sequestered by the frogs after they eat the mites (Saporito et al. 2011). And if they eat enough mites, they end up becoming dangerous even to something the size of a human.

REFERENCES

Ermilov, S. G., & A. E. Anichkin. 2014. A new species of Scheloribates (Scheloribates) from Vietnam, with notes on taxonomic status of some taxa in Scheloribatidae (Acari, Oribatida). International Journal of Acarology 40 (1): 109–116.

Robert, J., V. Šostr & J. Smrž. 1999. Feeding of the oribatid mite Scheloribates laevigatus (Acari: Oribatida) in laboratory experiments. Pedobiologia 43: 328–339.

Lee, D. C., & G. A. Pajak. 1990. Scheloribates Berlese and Megascheloribates gen. nov. from southeastern Australia, with comments on Scheloribatidae (Acarida: Cryptostigmata: Oriopodoidea). Invertebrate Taxonomy 4: 205–246.

Saporito, R. A., R. A. Norton, N. R. Andriamaharavo, H. M. Garraffo & T. F. Spande. 2011. Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. Journal of Chemical Ecology 37: 213–218.