Field of Science

New Zealand Fills a Biogeographical Gap

Lateral view of the holotype (and only known specimen) of new species Americovibone remota.


Taylor, C. K. 2016. First record of a representative of Ballarrinae (Opiliones: Neopilionidae), Americovibone remota sp. nov., from New Zealand. Journal of Arachnology 44 (2): 194–198.

New paper, and new species of phalangioid harvestman, out! And one that I'm pretty excited by, even if the vagaries of time allocation mean that I haven't been able to get the post out until a couple of weeks after it happened. After several years of studying New Zealand's long-legged harvestman fauna, I have to confess I was getting a bit complacent about. I certainly knew that I had not seen every species that the country had to offer, but I still thought that there were no real surprises remaining. The overall outline had become clear; any species of long-legged harvestman remaining to be described from New Zealand would be fairly closely akin to those already known.

Oh boy, was I wrong.

At some point last year (or maybe the year before), I was sorting through a jarful of specimens that were still waiting on my attention. In one of the vials, its contents collected in a remote part of the south-west South Island, was a tiny, wispy specimen that I at first glance paid little mind to. Newly-hatched juveniles are not uncommonly collected; they are almost always unidentifiable and end up being just chucked back into the jar never to be looked at again. Nevertheless, I pulled the specimen out to confirm that my first impression was correct. I placed the specimen in a dish under the microscope and glanced through the eyepiece. Then looked again, my eyes doubtless boggling. I may have even sworn a little. Not only was the specimen not a juvenile but fully adult, it was something I had long given up on seeing from New Zealand: a ballarrine.

Dorsal view of the main body.


The Ballarrinae are an unusual group of harvestmen that were not recognised until fairly recently. The group was named by Hunt & Cokendolpher in 1991 with species found in South Africa, Australia and South America. The South African species Vibone vetusta was the only one described prior to Hunt & Cokendolpher's (1991) paper, and until now no further species had been described since. The main reason these animals were overlooked previously is probably their size: ballarrines include some of the smallest of all harvestmen (the specimen I was looking at, for instance, has a central body only a bit over a millimetre long). Ballarrines differ from other harvestmen in the form of their pedipalps which are relatively long and have the patella much longer than the tibia (the converse is usually the case). Whereas other phalangioid harvestmen have the patella and tibia of the pedipalp more or less in a straight line or have the tibia bent slightly downwards, Hunt & Cokendolpher (1991) were struck by how the ballarrines had the tibia reflexed upwards relative to the patella. Ballarrine pedipalps also lack a terminal claw, and have only a relatively few glandular hairs instead of the denser covering of simple hairs found in other harvestmen. As noted in an earlier post and paper that I was associated with (Wolff et al. 2016), the overall pedipalp form is adapted for preying on small animals such as springtails: the long pedipalp acts like a tentacle that can be whipped forward to trap prey with its sticky hairs.

Until this point, New Zealand had been a puzzling gap in the Ballarrinae's otherwise classic Gondwanan distribution (long-term readers may recall that this is the second time I've seen a puzzling biogeographical lacuna filled). I didn't have any idea why that should be absent but even after looking at probably thousands of harvestmen specimens from all corners of the country I still hadn't seen any. Hence my immediate excitement about the find, but said excitement was also leavened with a certain degree of caution. Harvestmen taxonomy is heavily dependent on features of the males (particularly the male genitalia) with females of closely related species often being indistinguishable. Unfortunately, the only specimen of New Zealand ballarrine I had on hand was female. Sorting through the remainder of the collection I was working on failed to turn up any more. I even considered whether I could wrangle a trip to the original collection locality to see if I could find more specimens, but that proved unfeasible. The ballarrine had been collected by J. Dugdale in 1980 at a spot called the Dart Hut, which lies at the summit of the Rees-Dart walking track in Mount Aspiring National Park. This is a pretty isolated part of the country with no permanent population and no nearby roads. Travelling to the Dart Hut by foot takes a minimum of two days each way; the usual time taken to travel the Rees-Dart is five days (its supposed to be a nice hike that travels through similar terrain to the more famous Milford Trail without the massive crowds of the latter). What is more, at the time I was looking into it, the Rees-Dart was closed until further notice due to flooding earlier in the year taking out one of the bridges along it. Nevertheless, I eventually decided that the value of publicising the presence of this significant group in New Zealand outweighed the risk of not yet being able to confirm male morphology. Unfortunately, the nature of the specimen (spindly legs everywhere!) meant that I found myself unable to get good photographs and the resulting paper had to be illustrated with (always somewhat ropey when I do them) hand-drawn illustrations; nevertheless, the best photos I got are here in this post.

The tentacle-y pedipalp of A. remota is considerably longer than the central body; it's nearly as long as one of the legs!


Fortunately, sexual dimorphism within ballarrines tends to be low. I was very interested to see that the New Zealand ballarrine was more similar to the South American species Americovibone lanfrancoae than to any of the Australian species; so much so, in fact, that I ended up assigning it to the same genus as Americovibone remota. Americovibone lanfrancoae is also a very rare species, being described from only two known specimens from the Tierra del Fuego region. The most obvious difference between A. remota and A. lanfrancoae is that, in the former, the tibia of the pedipalp is not reflexed back above the patella as in every other ballarrine but is bent slightly downwards in a more standard position for phalangioids. This has some very interesting implications for ballarrine phylogeny. A molecular phylogenetic study of long-legged harvestmen by Groh & Giribet (2014) that included two ballarrines (the South African Vibone vetusta and the Australian Ballarra longipalpis) failed to unite the two as a clade. If accurate, this result would require the distinctive ballarrine pedipalp to have evolved on more than one occasion. The observation that A. remota may retain a more plesiomorphic pedipalp morphology could provide some correlation for this possibility.

But if Ballarrinae are indeed present in New Zealand, why are they apparently so rare? Part of the reason may be to do with habitat. Both the New Zealand and South American species of Americovibone are known from forests dominated by Nothofagus, southern beech. This tree genus is widespread in upland and colder parts of New Zealand. A bit north of the collection locality for A. remota, however, is an area where the beech forests disappear for a distance of a couple of hundred kilometres: this has been referred to as the "Nothofagus gap". Studies on other groups of organisms show that this gap is a significant one for New Zealand biogeography, with many beech-associated species restricted to one side or the other of the gap. Could A. remota be a specialist of the south-west beech forests of the South Island? If so, it is unique to one of New Zealand's least known corners.

REFERENCES

Hunt, G. S., & J. C. Cokendolpher. 1991. Ballarrinae, a new subfamily of harvestmen from the Southern Hemisphere. Records of the Australian Museum 43: 131–169.

Wolff, J. O., A. L. Schönhofer, J. Martens, H. Wijnhoven, C. K. Taylor & S. N. Gorb. 2016. The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones). Zoological Journal of the Linnean Society 177 (3): 558–601.

2 comments:

  1. I've seen suggestions in popular sources* that New Zealand may at times have been completely submerged during the Cenozoic. That "classic Gondwanan" includes the place has to be pretty strong evidence that it never was, hasn't it?

    Is it likely, BTW, that Americovibone predates the breakup of Gondwana? Or would we be looking at later dispersals between the fragments?

    * See e.g., Wikipedia article Zealandia (continent).

    ReplyDelete
  2. Whether the New Zealand landmass was completely submerged during the Oligocene remains pretty contentious. As I understand it, the geological evidence is not incompatible with total submersion, but there are some strong faunal indicators that at least some remnant land remained available. Some lineages unique to New Zealand seem likely to have diverged from relatives elsewhere to represent post-Oligocene imports. The most notable of these is good old Sphenodon, the tuatara; other candidates include moa, the Leiopelma frogs and the New Zealand wrens. Supporters of a sunken New Zealand have argued that these groups could have been present in Australia or elsewehere in the past but become extinct there after dispersing to New Zealand post-sinking. This appears to have been what happened with the bat family Mystacinidae, now known from the Australian fossil record. But obviously, this argument may be more credible for some (wrens, perhaps) than others (tuatara or Leiopelma). The mere existence of a 'classic Gondwanan' distribution including New Zealand doesn't necessarily say anything on the manner in itself; if the New Zealand biota is entirely post-Oligocene, then the great majority of its current components are going to be Australian in origin.

    In the case of Americovibone, long-distance oceanic dispersal seems unlikely (it's a pretty delicate animal and would be very vulnerable to desiccation) but I don't know if it could be called absolutely impossible. I think that there are harvestmen present on some of the oceanic Melanesian islands. Seeing as Americovibone may be a Nothofagus forest specialist, its apparent absence from Australia may reflect habitat availability as much as evolutionary history. As yet, there are no known Ballarrinae from the Nothofagus forests of Tasmania; it would be interesting to know if the ballarrines of that area (if they exist) are closer to the ballarrines of continental Australia or to austral Americovibone.

    ReplyDelete

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS