Field of Science

Walruses, Sea Lions and Fur Seals

Adaptation to a primarily aquatic lifestyle has happened numerous times within mammals, but some groups have radiated more in this environment than others. One particularly well-known group of marine mammals is the pinnipeds, the seals and sea lions.

Australian sea lions Neophoca cinerea on a beach on Kangaroo Island, copyright Diver Dave.

Pinnipeds are highly modified for life in the water, with streamlined bodies and all four limbs modified into flippers. When I was young, many of the animal books that I read referred to pinnipeds as their own distinct order within the mammals. However, it has long been recognised that pinnipeds are derived from within the Carnivora and these days they are almost universally treated as a subgroup of the latter. Modern pinnipeds are divided between three families: the Phocidae ('true' seals), Otariidae (fur seals and sea lions) and Odobenidae (which has only one living species, the walrus Odobenus rosmarus). While some morphological analyses have argued for a relationship between the walrus and the Phocidae, the majority view treats the walrus and the Otariidae as together forming a clade Otarioidea, commonly referred to as the eared seals. There has historically also been some argument about whether the pinnipeds represent a single clade; some have argued for two separate origins, Otarioidea being related to bears whereas Phocidae were supposed to be closer to otters and weasels. However, the current majority supports a single origin for the group.

Northern fur seals Callorhinus ursinus, photographed by M. Boylan.

Eared seals differ from true seals in the possession of small external ears, and the ability to turn the hind flippers back under the body so that they can still function (if somewhat awkwardly) as feet when moving on land. I have seen Australian sea lions on coastal islands near Perth (there are boat tours that will take you to see them) and I can confirm that they can run along the beach at a surprising speed when they wish to. True seals have the hind flippers permanently directed behind them and so are forced to awkwardly belly-flop along when not swimming (doubtless as a result of this, true seals also differ from eared seals in that males lack an external scrotum). In the water, the hind flippers provide the main source of propulsion in true seals whereas eared seals get more of their thrust from the fore flippers (sea lions have been said to swim like penguins). As an aside, eared seals are also apparently unusual among mammals in that their milk completely lacks lactose. The lactose intolerant among you need not be denied dairy, you need only milk a walrus.

Mounted skeleton of Allodesmus sp., copyright Momotarou2012.

The earliest eared seals are known from the Miocene when they appear to have originated in the northern Pacific. Two extinct families from this place and period, the Enaliarctidae and Desmatophocidae, are commonly included in the Otarioidea, though it remains possible that either of these families should be placed outside the pinniped crown group, or closer to the true seals. The early Miocene Enaliarctidae differ from other otarioids in retaining differentiated premolars and molars (later forms have the cheek teeth uniform in appearance) and may well represent the ancestral form of the group. The mid- to late Miocene Desmatophocidae combined a rather Phocidae-like skull with a more Otarioidea-like post-cranium; the best-known genus Allodesmus had larger eyes than other otarioids and may have hunted in deep waters. One species of desmatophocid, Allodesmus sinanoensis, may have reached a length approaching five metres, making it larger than a modern walrus and rivalling the elephant seals in size. I highly recommend a series of posts on Allodesmus written a few years back by Robert Boessenecker (1, 2, 3, 4) that cover just about everything you might want to know about this animal.

Skull of Gomphotaria pugnax, from Robert Boessenecker.

Though only one walrus species is generally recognised in the modern fauna, the family was much more diverse in the past. However, most fossil Odobenidae lacked the tusks of a modern walrus and would have been more similar at a glance to sea lions. These early odobenids would have probably been generalist fish-feeders (Boessenecker & Churchill 2013). The modern walrus, in contrast, feeds primarily on bivalves. They don't crush the clam's shell but grab it with their lips and then suck powerfully enough that the meat is ripped out. Other than the tusks, the teeth of a modern walrus are small and weak; one close fossil relative, the Pliocene Valenictus chulavistensis, went so far as to lose the non-tusk teeth entirely. The tusks themselves are usually thought to function in display and the like rather than having any prominent role in feeding. However, it is an intriguing detail that the fossil whale Odobenocetops that converged in its feeding biology with walruses also possessed a large tusk. The non-tusk teeth were still used in feeding in the fossil clam-feeding walrus genera Dusignathus and Gomphotaria, which had a pair of large forward-directed tusks in both the upper and lower jaws.

Suckling South African fur seals Arctocephalus pusillus, copyright Robur.q.

The majority of living eared seals belong to the Otariidae, which have been divided in the past between the fur seals and sea lions. Fur seals tend to be smaller than sea lions and possess a dense layer of underfur. However, more recent phylogenetic studies (particularly molecular ones) have thrown this distinction out the window (e.g. Higdon et al. 2007). Instead, the northern fur seal Callorhinus ursinus of the north Pacific is probably the sister species to all other living otariids. Even the southern fur seals, generally placed in a single genus Arctocephalus, may not be monophyletic relative to the New Zealand sea lion Phocarctos hookeri (as a result, some authors have suggested resurrecting the genus Arctophoca for all southern fur seals other than the South African fur seal Arctocephalus pusillus). The South American fur seal Otaria flavescens may also be associated with this latter group. The two north Pacific sea lions, Steller's sea lion Eumetopias jubatus and the Californian sea lion Zalophus californianus, form a clade outside the southern otariids. The remaining species is the Australian sea lion Neophoca cinerea whose position has been harder to pin down: some analyses place it close to the New Zealand sea lion but others position it well away from all other southern otariids, possibly even outside all other otariids except the northern fur seal.

Walruses Odobenus rosmarus crowded on shore, from here.

Fur seals and sea lions were heavily hunted in the past for pelts and oil and some species remain endangered. Climate change poses a particular threat to cold-water species; for instance, recent years have seen significant contractions in walrus ranges, leading to dramatic crowding in the locations remaining. Conversely, the Antarctic fur seal Arctocephalus gazella, once feared extinct, has apparently exhibited a population explosion in recent decades, perhaps because lowered whale populations have led to more food being available for seals.


Boessenecker, R. W., & M. Churchill. 2013. A reevaluation of the morphology, paleoecology, and phylogenetic relationships of the enigmatic walrus Pelagiarctos. PLoS One 8 (1): e54311.

Higdon, J. W., O. R. P. Bininda-Emonds, R. M. D. Beck & S. H. Ferguson. 2007. Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC Evolutionary Biology 7: 216.

Repenning, C. A., & R. H. Tedford. 1977. Otarioid seals of the Neogene. Geological Society Professional Paper 992: i–vi, 1–93, 24 pls.

No comments:

Post a Comment

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="">FoS</a> = FoS