This possibility had been considered for a while. In 1890, a Norwegian entomologist recognised distinct montane and coastal species, noting a tendency for the former to the neatly striped whereas the latter was more blotchy. Later authors, however, rejected this distinction. In 1953, a Russian author expressed the view that B. griseostriatus "varies markedly in many characters; all attempts to establish subspecies and varieties are unjustified, because almost all varieties are connected by transitions" (Angus et al. 2015). In its overall appearance, B. griseostriatus is a a fairly undistinguished small diving beetle. Most of the body surface is densely and finely punctate both dorsally and ventrally, and it lacks some of the modifications found in other diving beetles such as lateral grooves on the pronotum or sucker-hairs on the male tarsi (Angus 2010). This latter feature, offhand, is an adaptation that assists males who have it in clinging to the backs of females during mating. Their functionality would be much reduced in punctate species such as B. griseostriatus because the the uneven surface of the female would prevent the suckers from getting a grip, and phylogenetic studies suggest that their absence in Boreonectes may represent a secondary loss. I don't know if the Boreonectes males do anything to make up for their absence; maybe they just have to grip tighter.
The complicated nature of B. griseostriatus' identity became really apparent in the 2000s when karyotypic studies on European specimens identified several different chromosomal races, distinct not only in chromosome topography but also in number, that may represent distinct species. The original B. griseostriatus of lowland Sweden possesses a karyotype of thirty pairs of autosomal chromosomes plus the X sex chromosome (sex is determined in this genus by an X0/XX system where males have one copy of the X chromosome and females have two, with no Y chromosome). Boreonectes multilineatus, the Scandinavian montane species, has 28 autosomal pairs. Other species have fewer. It appears likely that a similar thing is happening in Boreonectes to the situation I described in an earlier post for the bat genus Rhogeessa where mutations lead to chromosomes becoming fused or split. It is notable in this regard that Angus (2010) found several specimens of B. ibericus from Morocco that were heterozygous for a chromosomal fusion, so that a single fused chromosome was paired meiotically with distinct chromosomes 1 and 24.
Externally, however, these genetically distinct species remain all but indistinguishable. There may be a tendency for one species to be larger than another, or towards slightly different genital morphologies, but these differences are not distinct enough or consistent enough to provide a reliable guide to identification. Which, if you don't have access to fresh specimens allowing a karyotype spread, is a problem.
REFERENCES
Angus, R. B. 2010. Boreonectes gen. n., a new genus for the Stictotarsus griseostriatus (De Geer) group of sibling species (Coleoptera: Dytiscidae), with additional karyosystematic data on the group. Comparative Cytogenetics 4 (2): 123–131.
Angus, R. B., E. M. Angus, F. Jia, Z.-N. Chen & Y. Zhang. 2015. Further karyosystematic studies of the Boreonectes griseostriatus (De Geer) group of sibling species (Coleoptera, Dytiscidae)—characterisation of B. emmerichi (Falkenström, 1936) and additional European data. Comparative Cytogenetics 9 (1): 133–144.
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS