Field of Science

The Concilitergans: Sitting Next to Trilobites

The last few decades have seen a vast increase in our understanding of life during the early Cambrian. Long one of the most famous groups of invertebrates of the Palaeozoic, the trilobites are now known to have shared their early environment with a number of related lineages that bore some resemblance in overall appearance but lacked their mineralisation of the exoskeleton. One such group was labelled by Hou & Bergström (1997) as the Conciliterga.

Reconstruction of the concilitergan Kuamaia lata from Hou & Bergström (1997). Note that the reconstructed appearance of the eyes is probably erroneous, as explained below.


Concilitergans are a group of flattened marine arthropods known from the early and middle Cambrian of a number of parts of the world, including North America, China and Australia. Most species were ovoid in shape (like a typical trilobite), tapering somewhat towards the rear and often ending in a point. An Australian species, Australimicola spriggi, was more elongate in form and ended in a pair of terminal spines. Some were quite sizable; one species, Tegopelte gigas, reached nearly a foot in length and was one of the largest known animals of its time. Concilitergans also resembled trilobites in possessing a more or less semi-circular head shield followed by a series of regular segments and often a final larger pygidial segment. Towards the front of the body, the segment boundaries were anteriorly reflexed (Paterson et al. 2012). In a number of species, the body segmentation was more prominent medially than laterally with the tergites overlapping slightly down the mid-line but not along the edges. A pair of antennae arose from the underside of the head near the front. In most species, with the exception of Australimicola, a pair of prominent teardrop-shaped bulges was also present dorsally near the front of the head. These bulges were interpreted as a pair of dorsal eyes by Hou & Bergström (1997) but re-interpreted by Edgecombe & Ramsköld (1999) as raised areas of the exoskeleton that provided accomodation for the actual eyes located on the underside of the head.

Reconstruction of Tegopelte gigas, copyright Marianne Collins.


Phylogenetic analyses have confirmed a close relationship between concilitergans and trilobites (Edgecombe & Ramsköld 1999) and the two groups probably resembled each other in life-style. With their ovoid shape, flattened body and down-cast eyes, concilitergans were also not dissimilar in overall conformation to modern cockroaches and a comparison is tempting. Study of trackways attributed to Tegopelte, owing to their size and structure, indicated that it mostly walked with a slow, low gait but was also capable of adopting a higher, faster gait for quickly skimming across the sediment surface (Minter et al. 2012). It should be noted that while news reports on the latter study (like this one) repeatedly refer to Tegopelte as a predator, the original paper consistently describes it as a "predator or scavenger". One can imagine concilitergans crawling along the sea-bed, picking up fragments of organic matter and scavenging on the remains of the less fortunate. Eventually, though, their lack of armament compared to their longer-surviving allies might have been their downfall as they were less prepared to deal with the diversification of active predators as the Cambrian progressed.

REFERENCES

Edgecombe, G. D., & L. Ramsköld. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology 73 (2): 263–287.

Hou X. & J. Bergström. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata 45: 1–116.

Minter, N. J., M. G. Mángano & J.-B. Caron. 2012. Skimming the surface with Burgess Shale arthropod locomotion. Proceedings of the Royal Society of London Series B—Biological Sciences 279: 1613–1620.

Paterson, J. R., D. C. García-Bellido & G. D. Edgecombe. 2012. New artiopodan arthropods from the Early Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia. Journal of Paleontology 86 (2): 340–357.

No comments:

Post a comment

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS