Field of Science

The Age of the Ceratites

The ammonites are unquestionably one of the most famous groups of fossil mollusks, indeed of fossil invertebrates in general. Even those who have little consciousness of the fossil world might be expected to have a vague mental picture of a coiled shell housing a squid-like beast. But ammonites are far from being the only group of shelled cephalopod known from the fossil record. And though ammonites may have dominated the marine environment during the Jurassic and Cretaceous periods, during the preceding Triassic period they were overshadowed by another such group, the ceratites.

Reconstruction of Ceratites spinosus, from Klug et al. (2007).

The ceratites of the order Ceratitida (or suborder Ceratitina, depending on how you've tuned your rank-o-meter today) were close relatives of the ammonites, each deriving separately from an earlier cephalopod group known as the prolecanitids. The earliest forms regarded as ceratites appeared during the mid-Permian, though the exact dividing line between prolecanitid and ceratite seems to be somewhat arbitrary (as, indeed, is only to be expected with a well-known historical lineage). During the remainder of the Permian their diversity remained fairly subdued. When marine life was hit with the cataclysmic upheaval that was the end-Permian extinction, two lineages of ceratites managed to squeak through, together with a single other prolecanitid lineage that would give rise to the ammonites during the ensuing Triassic. With most of their competitors thus eliminated, ceratite diversity expanded rapidly.

Externally, the shells of ceratites and ammonites were very similar, and without knowing their evolutionary context one would be hard-pressed to tell one from the other. Most ceratite shells formed the typical flat spiral one associates with ammonoids, with different species being variously evolute (with successive coils lying alongside the previous one) to involute (outer coils overlapping and concealing the inner ones), and cross-sections varying from narrow and lenticular to broad and low (Arkell et al. 1957). One later Triassic family, the Choristoceratidae, had shells that began as an evolute coil but became uncoiled or straightened in later stages. Another Upper Triassic group, the Cochloceratidae, had turreted shells that might externally be mistaken for those of a gastropod.

Ceratites dorsoplanus, showing ceratitic sutures, copyright Hectonichus.

Internally, ceratites and ammonites often differed in the structure sutures, the lines formed by the join between the outer shell and the septa dividing the internal chambers. In ammonoids as a whole, the sutures are variously curved back and forth on the inside of the shell, with those parts of the suture going forwards (towards the shell opening) forming what are called saddles and those going backwards (away from the opening) forming lobes. In most ceratites, the sutures more or less form a pattern that is known (appropriately enough) as ceratitic: the saddles are simple and not future divided, but the lobes have multiple smaller digitations. In some later taxa, the sutures became goniatitic (with both saddles and lobes simple, secondarily similar to those found in earlier ammonoids) or ammonitic (with both saddles and lobes subdivided, the pattern more commonly associated with ammonites).

Our knowledge of the soft anatomy of ceratites remains limited. We know that they possessed an anaptychus (a leathery plate at the front of the body that may have functioned as an operculum, as I described in an earlier post). Known radulae have fairly simple, slender, undifferentiated teeth (Kruta et al. 2015) so they were probably micro-predators or planktivores in the manner of most ammonites. A black, bituminous layer sometimes preserved against the inside of the shell in the body cavity may represent the remains of the dorsal mantle. Similarity between this layer and the dorsal mantle of nautilids lead Klug et al. (2007) to infer the presence of a non-mineralised hood in ceratites, though I wonder how the presence of a hood would relate to an anaptychus. Conversely, Doguzhaeva et al. (2007) interpreted the black layer as the remains of ink from a ruptured ink sac.

Assemblage of Arcestes leiostracus, copyright Lubomír Klátil.

Ceratites were to remain the ecological upper hand throughout the course of the Triassic. Though ammonites (represented by the phylloceratidans) were not uncommon during this period, their diversity remained consistently lower. However, the end of the Triassic was marked by a spike in global temperatures and ocean acidification, generally regarded as connected to the volcanic rifting activity that marked the beginning of formation of the Atlantic Ocean (Arkhipkin & Laptikhovsky 2012). Of the two ammonoid lineages, only the ammonites survived into the Jurassic; the ceratites were wiped out. Whether some aspect of ammonite biology made them better suited to survive the stresses of global climate change, or whether their survival was a question of simple dumb luck, seems to be an open question. Nevertheless, with the ceratites out of the picture, the way was open for the ammonites to become the lords of the Mesozoic ocean.


Arkell, W. J., B. Kummel & C. W. Wright. 1957. Mesozoic Ammonoidea. In: Moore, R. C. (ed.) Treatise on Invertebrate Paleontology pt L. Mollusca 4. Cephalopoda: Ammonoidea pp. L80–L465. Geological Society of America, and University of Kansas Press.

Arkhipkin, A. I., & V. V. Laptikhovsky. 2012. Impact of ocean acidification on plankton larvae as a cause of mass extinctions in ammonites and belemnites. Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen 266 (1): 39–50.

Doguzhaeva, L. A., R. H. Mapes, H. Summesberger & H. Mutvei. 2007. The preservation of body tissues, shell, and mandibles in the ceratitid ammonoid Austrotrachyceras (Late Triassic), Austria. In: Landman, N. H., R. A. Davis & R. H. Mapes (eds) Cephalopods Past and Present: New Insights and Fresh Perspectives pp. 221–238. Springer.

Klug, C., M. Montenari, H. Schulz & M. Urlichs. 2007. Soft-tissue attachment of Middle Triassic Ceratitida from Germany. In: Landman, N. H., R. A. Davis & R. H. Mapes (eds) Cephalopods Past and Present: New Insights and Fresh Perspectives pp. 205–220. Springer.

Kruta, I., N. H. Landman & K. Tanabe. 2015. Ammonoid radula. In: Klug, C., et al. (eds) Ammonoid Paleobiology: From Anatomy to Ecology pp. 485–505. Springer: Dordrecht.


  1. It has (very) recently been suggested that high mercury levels from volcanic activity contributed to the extinctions at the end of the Triassic along with the climate change and acidification from other components of the volcanic gas. Would we be able to tell if there was also a large amount of sulphur tetrafluoride, which is directly toxic to animals?

    Is there an online atlas showing locations of species or groups of extinct animals with where the fossils were found and when they were deposited? I suddenly want to play with one. The continental drift part might be hard to programme, I suppose. I know it would only show what got fossilised and what fossils then survived and were then found, not the true distributions of the animals and plants, but it would still be rather interesting.

    1. I really have been very remiss in responding to comments lately. You know how it goes, you think, "I'll get onto that shortly", and suddenly it's Tuesday.

      I don't know if the Paleobiology Database offers the sort of tools you're referring to. Certainly it provides localities and dates, and maps for a given period aren't too difficult to find online. For marine organisms with a high preservation potential like molluscs, the disconnect between known and actual distribution might not even be that large.

    2. I am not very demanding, as long as you respond while I am still alive. I won't be complaining if you don't, though.

      That database is just what I wanted. Very flexible and helpful. It will toggle from present day to ancient maps. However, it has nothing for Ammonitida or Phylloceratida for the Triassic, only starting in the Jurassic. I suppose the database is not entirely filled yet. Still quite fun to play with.

    3. Hardly surprising, as there would be an awful lot to fill in. I should also note that, while I can't recall any specific examples, I have encountered cases where it looks like the PbD gives an overly generous time range for certain taxa owing to the inclusion of taxonomically uncertain records.

  2. I should have googled first, it seems most volcanic SF is sulphur hexafluoride which is relatively safe. Silicon tetrafluoride may be in some volcanic gas.

  3. Nice article, it reminds me of a book I really enjoyed, "Squid Empire: The Rise and Fall of the Cephalopods", by Danna Staaf

    1. I'm not familiar with that book. Maybe I should take a look at it some day.


Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="">FoS</a> = FoS