Field of Science

Colpochila: The Chafing of a Mega-genus

Just a few weeks ago, I discussed the melolonthines, a hyperdiverse group of beetles including the chafers that have historically presented something of a taxonomic challenge. In the comments on that post, Adam Yates brought up one aspect of the difficulties presented by this group that I hadn't gotten around to discussing. This is the presence among melolonthines of a number of what may be called 'mega-genera', large genera containing literally hundreds of species that defy attempts to break them down into more manageable units. So on that note, it's only appropriate that I move on to an example of one of these mega-genera, Colpochila.

Colpochila obesa, from Insects of Tasmania.


Colpochila is an Australian genus of melolonthines belonging to a group currently recognised as the tribe Liparetrini (Britton 1986) though readers of the earlier post may recall that relationships between Australian melolonthines and taxa elsewhere in the world remains something of an open question. Liparetrins are, on the whole, a fairly generalised group: characters of the group include a lack of metallic coloration, a labrum which sits underneath and is not fused to the clypeus, simple claws, and relatively broad hind tibiae that end in a pair of widely separated spurs that are placed one above and one below so that the tarsus when moved from side to side can move between the spurs. The two largest genera in the tribe, by a significant margin, are Colpochila and Liparetrus. Somewhere in the region of 130 species are currently recognised in Colpochila whereas Liparetrus is even more diverse. However, both genera were referred to by Britton (1986) as 'polythetic': that is, both represent assemblages of species that, while clearly connected to each other overall, are difficult to characterise from a diagnostic perspective. Species of the genus possess enough features in common that we can readily recognise them as related but it is difficult to drill down on any individual feature or set of features that is shared between all species without exception. Similarly, while I can say from experience that it is generally easy to tell at a glance whether a given species is a Colpochila or a Liparetrus, it is a lot harder to actually define what separates the two genera. The most obvious distinction is size: Colpochila species are relatively large chafers, over a centimetre in length, whereas Liparetrus are smaller. Other features that each separate most Colpochila species from most (though not all) Liparetrus are circular eyes (most Liparetrus have eyes with flattened edges in back so the eye is closer to semi-circular), antennae with more segments in the terminal club, longer elytra that leave less of the end of the abdomen exposed, and hind coxae without the translucent margins found in many Liparetrus.

The lifestyles of Colpochila species are still not very well known. As with other melolonthines, most of the life is spent underground with mature adults only emerging very briefly to breed. The active adults fly at night and may be attracted to lights; it seems unclear whether they feed at maturity. This genus is mostly found in drier habitats such as open woodland, grasslands or semi-desert (mind you, this is Australia we're talking about; drier habitats are 90% of what's going). Of the known species, over half are found in Western Australia.

A second Colpochila species, from Friends of Queens Park Bushland.


So why are Colpochila and other melolonthine mega-genera so diverse? It should be noted that straight geographical and/or ecological divergence does not appear to be the reason: not only is it possible to find multiple species of a single genus in one location but one may even collect very similar species together. It might be that the diversity of the mega-genera is artefactual, a reflection of the failure of taxonomists to properly identify relationships: any study that wanted to explain their diversity would have to study their phylogenetic relationships with related smaller genera to confirm their evolutionary coherence and/or age of divergence. However, if the current generic classification of melolonthines reflects a real evolutionary pattern, a potential explanation was proposed by Britton (1986). Adult melolonthines do not emerge immediately upon maturing but remain dormant underground awaiting a suitable environmental signal such as rainfall. However, rainfall in the arid zone at any one time is often uneven. Dormant beetles at one spot may feel the urge to emerge while others nearby may be left to wait for the next shower. The first wave will have died off before the second wave emerges, and their offspring will not yet be mature. As a result, sub-populations in a single region may become temporally staggered allowing the possibility of divergence via genetic drift. Eventually, their emergence times may drift back into sync but by then they may no longer be able to breed successfully. Could this be the reason why so many species may be found in a single location or may other factors be more significant?

REFERENCE

Britton, E. B. 1986. A revision of the Australian chafers (Coleoptera: Scarabaeidae: Melolonthinae) vol. 4. Tribe Liparetrini: genus Colpochila. Australian Journal of Zoology, Supplementary Series 118: 1–135.

4 comments:

  1. I'm skeptical of the 'patchy rain hypothesis' but it strikes me that aspects of it should be testable - with a robust alpha taxonomy and phylogeny. I wonder if either will ever be forthcoming?
    I'm pretty sure I've collected an undescribed Colpochila from an apparently quite restricted geographic range (single rocky gorge) around Alice Springs, whereas my experience with Heteronyx is more than half of what you find won't key to species.

    ReplyDelete
    Replies
    1. I would think that the chance of undescribed Colpochila species being out there is more than likely, especially in an area as sure to be under-surveyed as the Territory.

      One question I was wondering about after writing the post was whether there was any possibility of diversity being related to specialisation on particular larval food plants. That would be even harder to test though, seeing as our current knowledge of larval development for this genus is almost nil. You've probably have to find the larvae underground to survey their food habits (surely not easy) as well as somehow identify larvae to species, probably via molecular testing.

      Delete
    2. I've often wondered how one would go about finding the food species of something like a subterraneum beetle larva - direct observation would seem impossible. DNA probes of gut contents perhaps?

      Delete
    3. Presumably by the time the mature beetle emerges, all remnants of its larval diet will have been voided from the gut, so that would still require somehow finding the larvae themselves. Indeed, it would require the finding of multiple larvae: I'm guessing the developing larvae probably don't move too far underground once they find a suitable food source, so the presence of only one food species in the gut of one individual would not demonstrate diet specificity in itself.

      Though that does raise the question of how close to appropriate food sources would females deposit their eggs? Could we potentially recognise host specificity in chafers by observing whether females of a particular beetle species are attracted to particular plant species?

      Delete

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS