Field of Science

The Australasian Not-Robins

I've complained in the past about the decided lack of imagination displayed by many British naturalists when describing the fauna of Australasia. So many animals got lumbered with the names of European species to which they bore a superficial resemblance but of which they were not necessarily close relatives. So we got warblers that are not warblers, cod that are not cod, and the subject of today's post: robins that are not robins.

Male scarlet robin Petroica boodang, copyright Patrick Kavanagh.


Petroica is a genus of small perching birds found widely in Australasia, including species on various islands of the south Pacific. They are dumpy little birds whose males often have contrasting colour patterns with a dark dorsum and a light underside, though a couple of species are uniformly black. A number of species have red patches on the forehead and/or breast, and it is not too difficult to see why British naturalists chose to compare them to the European robin. They are insectivores, gleaning prey from vegetation or on the ground.

Over a dozen species are recognised in the genus Petroica, though the exact number varies depending on the author. Phylogenetic studies indicate four main lineages within the genus (Kearns et al. 2018) with some correlation between phylogeny and distribution. An Australian clade includes the scarlet robin P. boodang, the flame robin P. phoenicea, the pink robin P. rodinogaster and the rose robin P. rosea. As is indicated by their names, these are all red- or pink-chested forms, and they are found in woodlands in southeastern and southwestern Australia where they usually feed from leaves and branches. Females are duller in coloration, mottled grey or brown above and having the red on the underside lessened or lost; for the most part, the same pattern applies to females of the species described below.

Red-capped robin Petroica goodenovii, copyright Patrick Kavanagh.


More arid parts of Australia are inhabited by the red-capped robin Petroica goodenovii which is more terrestrial in habits than the preceding species. The red-capped robin forms a clade with two insular species, the Norfolk Island robin P. multicolor and the Pacific robin P. pusilla, the latter being found over a wide range from the Solomon Islands to Samoa (with a subfossil record from Tonga). The Norfolk Island robin is endangered with only an estimated 400 to 500 pairs surviving, a position whose severity was not fully appreciated until recently owing to the Norfolk Island and Pacific robins previously being regarded as conspecific with the Australian scarlet robin (Kearns et al. 2016). Kearns et al. (2016, 2018) also identified a strong genetic divergence between Pacific robins from the Solomon Islands and the eastern part of their range, suggesting the possibility of a further species division. However, they did not support such a divergence for the Samoan population which had previously been suggested as a candidate species by plumage and song characters.

Snow mountain robin Petroica archboldi, copyright Papua Expeditions.


The third clade includes two montane New Guinean species, the subalpine robin Petroica bivittata and the snow mountain robin P. archboldi. The male subalpine robin has a black back and white breast, without any red patches, and the species is found in high mountain forests and shrublands. The snow mountain robin, on the other hand, is a large Petroica species that is mostly slate-grey in coloration with a small red patch on the upper breast. It is found at the highest altitude of any bird in New Guinea and is the only bird found there in rocky scree habitats above the tree line. Both the New Guinean Petroica species, but particularly P. archboldi, have disjointed, localised ranges, and Kearns et al. (2018) expressed concern about the snow mountain robin's likelihood of future survival in the face of mining pressures and temperature rises.

North Island robin Petroica longipes, copyright Tony Wills.


The fourth and final clade, albeit a weakly supported one, unites the New Zealand Petroica species. Historically, most authors have recognised three Petroica species in New Zealand that, with the typical pithiness often associated with discussions of the somewhat depauperate New Zealand fauna, were generally known simply as the robin P. australis, the black robin P. traversi, and the tomtit P. macrocephala. However, multiple subspecies have been recognised within both the robin and the tomtit and recent years have seen calls for all to be recognised as distinct species (potentially raising the number of species in New Zealand to nine). Acceptance of these proposals has been varied: the North Island robin P. longipes now seems to be generally accepted as a separate species from the South Island P. australis but I have seen less recognition of more than one species of tomtit. The New Zealand robins are largely terrestrial feeders, and are noticeably longer-legged than other Petroica species. Male New Zealand robins are also duller in coloration with brownish backs. The more arboreal tomtits are the more similar in overall appearance to Petroica species from elsewhere. Most tomtit males are black above and white or yellow below. For the most part, female tomtits resemble other Petroica species in being duller than the males, brown above rather than black, but the female Auckland Island tomtit P. (macrocephala) marrineri is closer in appearance to the male. The Snares Island tomtit P. (macrocephala) dannefaerdi is uniformly black in both sexes. In this it resembles the larger black robin of the Chatham Islands, some distance east of New Zealand's South Island. Black robins are most reknowned for their conservation history with introduced predators reducing the entire species' population to only five individuals in 1980, including only a single breeding female. An intensive management program was instituted beginning with the capture and transfer of the entire population to a predator-free island. Higher breeding rates were encouraged through the removal of egg clutches from robin nests, with the bereaved birds laying a new batch to replace them and the original clutch placed in a nest of the local tomtit race to be raised cuckoo-style. As a result of this effort, population numbers increased until the current black robin population numbers about 250 individuals. Obviously, that's by no means enough to count their survival assured (and questions still linger about what, if anything, will be the long-term effects of inbreeding from such a minute founding populations) but it's still one heck of a lot better than what it was.

REFERENCES

Kearns, A. M., L. Joseph, L. C. White, J. J. Austin, C. Baker, A. C. Driskell, J. F. Malloy & K. E. Omland. 2016. Norfolk Island robins are a distinct endangered species: ancient DNA unlocks surprising relationships and phenotypic discordance within the Australo-Pacific robins. Conserv. Genet. 17: 321–335.

Kearns, A. M., L. Joseph, A. Thierry, J. F. Malloy, M. N. Cortes-Rodriguez & K. E. Omland (in press 2018) Diversification of Petroica robins across the Australo-Pacific region: first insights into the phylogenetic affinities of New Guinea's highland robin species. Emu.

The Pisocrinidae: Babyface Crinoids

One question that I haven't yet found an answer to is why the Palaeozoic marine fauna seems to have included so many filter feeders. Cystoids, blastoids, graptoloids... so many of the distinctive taxa occupying this niche would be gone by the period's end, without leaving any clear analogues behind them. What was the cause underlying this abundance? Is it simply a misapprehension caused by the filtering effect of history, with the modern fauna containing fewer major lineages but no fewer actual species? Is it the distorting lens that causes us to tend to assign a higher 'rank' to those lineages arising earlier in time, whatever their practical levels of disparacy? Or was there actually something different about what could be found in Palaeozoic seawater?

Reconstructions of short-armed and long-armed species of Pisocrinus, from Rozhnov (2007).


The Pisocrinidae are one of those distinctive Palaeozoic marine groups, known from around the world during the Silurian and Devonian. As crinoids, they were perhaps not as immediately unfamiliar to the modern eye as some of the other taxa that could be found at that time, but they were certainly different from any modern crinoid. The majority of the crinoids that have ever lived can be assigned to one of two main clades. One, the cladid lineage, includes all the crinoids alive today. Pisocrinids belong to the other major lineage, the disparids, which were prominent for most of the Palaeozoic era but failed to make it past the end of the Permian. Disparids differed from cladids in that their calyx included a single circlet of plates (the inferradials) beneath the circlet of the radials (the large plates making up the main body of the calyx) whereas cladids (at least to begin with) had two such circlets. Many disparid sublineages showed a tendency towards reduction and/or simplification of the calyx. In pisocrinids, most of the calyx was made up of just three plates: two large radials (representing the A and D rays of the basic crinoid calyx) and a greatly enlarged B inferradial. The B, C and E radials were all reduced in size. The arms of pisocrinids mostly lacked lateral pinnules and were undivided; one genus, Cicerocrinus, had bifurcating arms bearing lateral ramules (Moore et al. 1978). The length of the arms varied considerably between species: in some they were quite short and broad, in others they were remarkably long. Because their derived morphology made it difficult to compare pisocrinids to related families, their origins have been regarded as mysterious. Rozhnov (2007) suggested a derivation from an earlier, more typical crinoid family, the Homocrinidae, via paedomorphosis, possibly as a result of the evolution of a longer larval period in the life cycle (he specifically suggested that this extended larval phase may have allowed the ancestors of pisocrinids to spread across the Iapetus Ocean between the then-existing continents of Laurentia and Baltica). A direct pisocrinid-homocrinid connection was not supported in the phylogenetic analysis of disparids by Ausich (2018) but Rozhnov's overall model of pisocrinid paedomorphosis remains a possibility.

Assemblage of Triacrinus, from here.


During the Silurian, pisocrinids were among the most abundant, if not the most abundant, groups of crinoids. They were found in a variety of habitats but were particularly abundant around reefs in deeper waters. At first glance, the non-pinnulate arms of pisocrinids appear poorly suited for filter feeding, and one might be inclined to propose a more tentacular method of obtaining food items. However, such a method would seem unlikely for the short-armed species, whose arms would have been almost entirely inflexible. Even the long-armed species sometimes had arms made up of relatively long segments whose flexibility may have been limited. An alternative possibility, I suppose, is that in life pisocrinids may have had long tube feet that took the place of the missing pinnules. Meanwhile, the absence of the pinnules meant that the arms could be lain tightly alongside each other when the crown was closed. Earlier authors presumed that, because of their preference for deeper waters, pisocrinids were rheophobic (that is, they were found in places where the water lacked a noticeable current). However, Ausich (1977) proposed that they were low-energy rheophilic, seeking locations where a moderate but steady current prevailed. The current would provide a steady supply of organic particles that could be captured by the crown, and the ability to close the arms tight would protect the oral region during occasional bouts of rougher conditions.

REFERENCES

Ausich, W. I. 1977. The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology 51 (4): 672–686.

Ausich, W. I. (in press, 2018) Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade. Swiss Journal of Palaeontology.

Moore, R. C., N. G. Lane, H. L. Strimple, J. Sprinkle & R. O. Fay. 1978. Inadunata. In: Moore, R. C., & C. Teichert (eds) Treatise on Invertebrate Paleontology pt T. Echinodermata 2. Crinoidea vol. 2 pp. T520–T759. The Geological Society of America, Inc.: Boulder (Colorado), and The University of Kansas: Lawrence (Kansas).

Rozhnov, S. V. 2007. Changes in the Early Palaeozoic geography as a possible factor of echinoderm higher taxa formation: delayed larval development to cross the Iapetus Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 306–316.

The Most Australian of Plants

Imagine yourself standing in a remote corner of northern Australia. Before you stretches an expanse of rolling hills, extending as far as the eye can see. The hills are covered with a carpet of green. You step forward, eager to explore these open fields. But as you approach them, everything changes. What appeared to be a uniform carpet is actually dense tussocks, each separated by an underlay of bare gravel. And instead of soft, yielding blades, the tussocks offer you nothing but resin and hate. Welcome to spinifex country.

Grassland dominated by Triodia pungens (bright green) and T. basedowii (grey-green), copyright Hesperian.


The spinifexes of the genus Triodia are a uniquely Australian group of plants. Some North American grasses have been assigned to this genus in the past but have since been moved elsewhere. There is also a widespread genus of coastal grasses that formally goes by the name of Spinifex but that is something different again. In many parts of arid Australia (and arid Australia equals most of Australia), spinifexes are the dominant form of plant life. As noted above, they grow in tight tussocks that may reach remarkable sizes and densities: clumps of the largest species may reach 2.5 metres in height and six metres in diameter (Lazarides 1997). Not uncommonly, these largest patches will be ring-shaped due to the centre dying off while growth continues around the edges. The leaf blades are long, needle-shaped, woody and rigid. Speaking from experience, the sharp tips of these blades will break off all too easily, embedding themselves in the flesh of any passers by. And some idea of their rigidity will also be conveyed by the fact that, in the growth season, it was not uncommon to discover macabre shish kebabs made from jumping grasshoppers that had had the misfortune to land on the end of one.

Mature stand of Triodia irritans, showing the tendency of hummocks to grow into circles as the centre dies off. Copyright ANBG photo M. Fagg.


Nearly 70 species are currently recognised within the genus, often differing in their preferred microhabitat. One of the most common species, Triodia basedowii, extends its range across almost the entirety of the continent between 18 and 30 degrees South and west of the Great Dividing Range. This species has a preference for sandplains and dunefields. Other species are far more localised. Barrett & Barrett (2011) described two new species found in association with sandstone cliff faces in the Ragged Range in Western Australia. Triodia barbata was found only in a thin band along the top of the cliff faces and may have had a population of only about 300 individuals. The more abundant (but still not widespread) T. cremnophila was found only on the vertical faces of the cliffs themselves. However, it must be noted that large gaps may exist in our knowledge of the ranges of Triodia species because of the remoteness and difficulty of getting to many of the regions in which they are found (seriously, if you've never been to central Australia yourself, it is difficult to appreciate just how much Absolutely Nothing there is there). Triodia mollis is known from two widely separated regions in northern Western Australia and Queensland with no confirmed records as yet from the entire expanse of the Northern Territory in between.

Preferred habitat of Triodia cremnophila, from Barrett & Barrett (2011). Yes, it only grows on the cliff face. Yes, someone presumably went down the cliff face to get specimens.


Being as woody and harsh as it is, it should come as no surprise that relatively few animals are capable of eating spinifex. Many Australian termites, such as the endemic genus Drepanotermes, are spinifex specialists; workers of Drepanotermes may be seen leaving their nest at night to collect pieces of spinifex blades and carry them back. Pastoralists may refer to 'hard' and 'soft' spinifex varieties but the difference is one of degree only; even the 'soft' spinifexes (usually the resin-producing species) are pretty damn hard by the standards of any other grass. Livestock are sometimes grazed on spinifex when bettter options are unavailable, in which case patches of spinifex may be burnt off to encourage the production of younger, more palatable growth (spinifex burns exceedingly well but also grows back readily from the remnant rootstock). The resin from spinifex also has a history of being used by indigenous Australians as an adhesive when making tools. For the most part, though, the main value of spinifex remains in its role as the dominant vegetation and habitat for the areas where it is found.

REFERENCES

Barrett, R. L., & M. D. Barrett. 2011. Two new species of Triodia (Poaceae: Triodieae) from the Kimberley region of Western Australia. Telopea 13 (1–2): 57–67.

Lazarides, M. 1997. A revision of Triodia including Plectrachne (Poaceae, Eragrostideae, Triodiinae). Australian Systematic Botany 10: 381–489.

The Australian Panda

The world is home to an incredible diversity of snails: there are literally thousands of species, some widespread, some restricted to very small areas. Most, as is the usual way of things, are tiny, barely discernible without very close examination. But then there are some that are very much not—such as the giant panda snail Hedleyella falconeri.

Giant panda snail Hedleyella falconeri, from the Queensland Museum.


Giant pandas are found on rainforest floors in northern New South Wales and southern Queensland, in a range spanning from the Barrington Tops to the D'Aguilar Range. They are Australia's largest land snail, reaching nine centimetres in diameter, about the size of a tennis ball. They have globose, reddish brown shells with a spiral pattern of darker broken bands. Their name bears no relation to any Asian mammals; instead, they were gifted the genus name Panda as a derivation from the Latin word pandere, meaning to stretch out or extend, presumably in reference to their size. The genus name later had to be changed but it survives in the vernacular (as well as in the name of a closely related genus of slightly smaller snails, Pygmipanda).

Panda snails are nocturnal, spending the days in moist spots such as buried in leaf litter or hidden under logs. At night, they roam in search of fallen leaves and fungal fruiting bodies. A study of giant pandas that tracked individual snails found that they wandered more or less randomly, up to about 20 metres over the course of a night, without returning to any particular 'home' site.

A demonstration of the size of H. falconeri, from Pollinator Link.


Like many other land snails, giant pandas are hermaphrodites, able to both fertilise and be fertilised during mating. They may have the largest sperm cells of any mollusc, each over a millimetre in length. Mating usually happens on a February night though observations in captivity suggest it may happen whenever consitions are suitable. The snail lays its hard-shelled eggs in batches of fifteen to twenty in a burrow in the leaf litter*. To continue with the theme, these are also realtively gigantic: close to two centimetres in diameter, comparable in size to those of a small bird. The young snails hatch at about 15 mm in size (I haven't found any reference to the eggs being tended by the parent in any way) and grow slowly. By the time they reach a year in age, they may not have even doubled in size, and it presumably takes several years for them to reach their full extent.

*So it turns out Paazan was right after all: pandas do hatch from eggs.

Pandas are not uncommon within their range and are not generally regarded as a conservation concern. Indeed, their nomadic habits have led to the suggestion that they may be well disposed to re-colonising regenerating forest (Parkyn & Newell 2013). Nevertheless, recent years have seen increasing fragmentation of suitable habitat within their range and this, together with their slow growth rate, means that I can easily imagine them becoming vulnerable if conditions deteriorate. I would hope that appropriate action is taken to ensure that there should always be giant pandas in eastern Australia.

REFERENCE

Parkyn, J., & D. A. Newell. 2013. Australian land snails: a review of ecological research and conservation approaches. Molluscan Research 33 (2): 116–129.

Boreonectes: Diversity Hidden Underwater

The beetle in the photo below (copyright Joakim Pansar) may or may not be Boreonectes griseostriatus. This small diving beetle, a few millimetres in length, has been regarded in the past as widespread with a distribution spanning the Holarctic region. However, in recent years it has become apparent that this single widespread species may actually be a number of more localised species in a skin.


This possibility had been considered for a while. In 1890, a Norwegian entomologist recognised distinct montane and coastal species, noting a tendency for the former to the neatly striped whereas the latter was more blotchy. Later authors, however, rejected this distinction. In 1953, a Russian author expressed the view that B. griseostriatus "varies markedly in many characters; all attempts to establish subspecies and varieties are unjustified, because almost all varieties are connected by transitions" (Angus et al. 2015). In its overall appearance, B. griseostriatus is a a fairly undistinguished small diving beetle. Most of the body surface is densely and finely punctate both dorsally and ventrally, and it lacks some of the modifications found in other diving beetles such as lateral grooves on the pronotum or sucker-hairs on the male tarsi (Angus 2010). This latter feature, offhand, is an adaptation that assists males who have it in clinging to the backs of females during mating. Their functionality would be much reduced in punctate species such as B. griseostriatus because the the uneven surface of the female would prevent the suckers from getting a grip, and phylogenetic studies suggest that their absence in Boreonectes may represent a secondary loss. I don't know if the Boreonectes males do anything to make up for their absence; maybe they just have to grip tighter.

Variation in parameres from male genitalia of the Boreonectes griseostriatus group, from Dutton & Angas (2007).


The complicated nature of B. griseostriatus' identity became really apparent in the 2000s when karyotypic studies on European specimens identified several different chromosomal races, distinct not only in chromosome topography but also in number, that may represent distinct species. The original B. griseostriatus of lowland Sweden possesses a karyotype of thirty pairs of autosomal chromosomes plus the X sex chromosome (sex is determined in this genus by an X0/XX system where males have one copy of the X chromosome and females have two, with no Y chromosome). Boreonectes multilineatus, the Scandinavian montane species, has 28 autosomal pairs. Other species have fewer. It appears likely that a similar thing is happening in Boreonectes to the situation I described in an earlier post for the bat genus Rhogeessa where mutations lead to chromosomes becoming fused or split. It is notable in this regard that Angus (2010) found several specimens of B. ibericus from Morocco that were heterozygous for a chromosomal fusion, so that a single fused chromosome was paired meiotically with distinct chromosomes 1 and 24.

Externally, however, these genetically distinct species remain all but indistinguishable. There may be a tendency for one species to be larger than another, or towards slightly different genital morphologies, but these differences are not distinct enough or consistent enough to provide a reliable guide to identification. Which, if you don't have access to fresh specimens allowing a karyotype spread, is a problem.

REFERENCES

Angus, R. B. 2010. Boreonectes gen. n., a new genus for the Stictotarsus griseostriatus (De Geer) group of sibling species (Coleoptera: Dytiscidae), with additional karyosystematic data on the group. Comparative Cytogenetics 4 (2): 123–131.

Angus, R. B., E. M. Angus, F. Jia, Z.-N. Chen & Y. Zhang. 2015. Further karyosystematic studies of the Boreonectes griseostriatus (De Geer) group of sibling species (Coleoptera, Dytiscidae)—characterisation of B. emmerichi (Falkenström, 1936) and additional European data. Comparative Cytogenetics 9 (1): 133–144.

Rhampsinitus Re-Redux

I've featured the African harvestman genus Rhampsinitus on this site twice before, but I'm going to have another dive into it today. There's still more I can say about this remarkable genus.

Male Rhampsinitus, possibly R. leighi, copyright Peter Vos. The individual ahead of the male is another Rhampsinitus, probably a female; there's also a short-legged harvestmen beneath the male.


There's more I could say about African phalangiids in general, in fact. There's never been a proper phylogenetic study of the long-legged harvestman family Phalangiidae, so we can't speak with confidence about the relationships between the African members of this group and their relatives elsewhere, but it would not be unexpected if the sub-Saharan phalangiids form an evolutionarily coherent group. Many of the family's most striking exemplars are to be found on the African continent: Cristina with their thick, spiky front legs; sleek, flattened Odontobunus, Guruia with their chelicerae like a pair of jar tongs held in a boxing glove. Rhampsinitus' current position as the best-known African harvestman genus is probably due not only to its diversity but also to its more temperate centre of distribution placing it closer to researchers than these other more equatorial genera.

As mentioned in my first post on the genus, there are currently over forty recognised species of Rhampsinitus. As alluded to in my second post, that number might be expected to change in the future. No reliable identification key is currently available for Rhampsinitus, nor is the information available for many species that would allow such a key to be written. A key to the southern African species was provided by Kauri (1961) but, while I did find this key invaluable when I conducted my own tentative foray into rhampsinitology, I couldn't recommend it to a novice. Kauri was simply unaware of the extreme variation that can be found among male Rhampsinitus belonging to a single species. There are only a handful of species for which both major and minor males have been described and, as I explained previously, minor males may not be identifiable to species without examining genitalia.

Probably a male Rhampsinitus vittatus, copyright Nanna.


This, obviously, is a problem for the handful of species that have been described from what appear to be minor males. Some of these, such as Rhampsinitus fissidens and R. hewittius, are probably doomed to remain mysteries at least until someone redescribes their types. Others may be more recognisable. Rhampsinitus qachasneki is an unusually spiny species described from the mountains of Lesotho, with some of the denticles along the front edge of the body multi-pointed. These distinctive denticles, like repurposed muntjak antlers, might reasonably be expected to be present in any major males of this species, if they exist. The challenge may be even greater for the handle of species that have been described from females. Nevertheless, the known female of R. maculatus, another Lesotho mountain species, has a distinctive spotted colour pattern and thick, remarkably hairy pedipalps that might be expected to show their analogues in the unknown males (again, if they exist: we're kind of glossing over the point that some harvestmen species are known to be parthenogenetic, because harvestmen systematics is so heavily predicated on male genital morphology that the idea of an all-female harvestman species is a trifle intimidating*).

*I assume that this is precisely what Zappa had in mind when he got to the end of Thing-Fish.

Then, of course, there's the persistent question of Rhampsinitus lalandei. This was the first species included in Rhampsinitus in 1879 and as such represents the type or sine qua non of the genus. As was not unusual for the time, its author Eugene Simon was a bit vague about where his original specimen(s) had come from, giving the locality as simply 'Cafrerie'. Cafrerie, rendered in English as Kaffraria or Kaffirland, is a geographical designation that has fallen out of favour these days for reasons I would hope to be obvious, but was commonly used during the 1800s to refer to the area around the eastern coast of modern South Africa, particularly around Port Elizabeth. Unfortunately, Simon's description of R. lalandei is not definitive by modern standards—most of the features described could apply to any number of Rhampsinitus species—and Simon's original specimen appears to have been lost. This presents a problem for any who would suggest that this large genus should be divided up as it might become uncertain which division represents the true Rhampsinitus. Starega (2009) suggested that R. lalandei might be the same as R. crassus, a species definitely found in the Port Elizabeth region. However, it should be noted that Simon described R. lalandei as being irregularly armed with denticles dorsally. In the majority of Rhampsinitus species, the denticles on the opisthosoma form very neat transverse rows, but in others they are a bit more messily placed. Rhampsinitus crassus is one of the former species but the description of R. lalandei suggests it may have been one of the latter. So if anyone's looking at harvestmen from around that area, keep your eyes open.

REFERENCES

Kauri, H. 1961. Opiliones. In: Hanström, B., P. Brinck & G. Rudebeck (eds) South African Animal Life: Results of the Lund University Expedition in 1950–1951 vol. 8 pp. 9–197. Almqvist & Wiksells Boktryckeri Ab: Uppsala.

Staręga, W. 2009. Some southern African species of the genus Rhampsinitus Simon (Opiliones: Phalangiidae). Zootaxa 1981: 43-56.

Gar!

Apart from the mostly terrestrial radiation of the tetrapods, the vast majority of today's bony-skeletoned fishes belong to the clade of the teleosts. Way back in the Triassic, the ancestors of this clade went through a process of modification of the jaw skeleton to make it more mobile and adroit in catching small prey, and this together with a tendency towards the lightening of the skeleton and the body's covering of bony scales marked the beginnings of what is now well over 25,000 species. But while they may pale in comparison to this phylogenetic behemoth, there are still non-teleost (and non-tetrapod) bony fishes out there if you look in the right places.

Alligator gar Atractosteus spatula, copyright Stan Shebs.


Most studies on fish phylogeny in the last decade or so have agreed that the living sister group of the teleosts is the Holostei, a clade including only eight living species. One of these is the bowfin Amia calva, an elongate, cylindrical-bodied fish with a long dorsal fin running most of the length of its back. The other seven sepecies belong to the gar genera Lepisosteus and Atractosteus, forming the family Lepisosteidae*. Gars are also elongate like the bowfin, albeit without the long dorsal fin, and have elongate, flattened jaws (tending to be narrower in Lepisosteus than Atractosteus). The tail fin in both bowfins and gars is rounded, not forked. Living holosteans are restricted to North America (including Central America and the Caribbean)** but fossils show them to have been more widespread in the past. They are mostly found in fresh water; some species may tolerate brackish or even salt water but they do not stay there permanently. Bowfins and gars are able to breathe air directly as well as through their gills (indeed, gars are reported to drown if prevented from coming to the surface for several hours) and can therefore survive in more stagnant waters than many other fish. The bowfin averages about half a metre in length; the smaller gar species are also in this range. The largest species, the alligator gar Atractosteus spatula, reaches at least close to three metres. Larger sizes (up to six metres or more!) have been reported for this species but appear likely to be errors or exaggerations; as noted by one authority, "All fishes shrink under the tape measure" (Grande 2010).

*The incorrect alternative spellings Lepidosteus and Lepidosteidae (as well as Lepidosteiformes) have often appeared in the past.

**References to a supposed Chinese gar have long persisted in the literature, based on a description of a "Lepidosteus sinensis" from 1873. This description was based on a drawing rather than an actual specimen, and it is now thought that the fish depicted was probably a belonid (an unrelated long-jawed teleost) rather than a gar.

Bowfin Amia calva sharing a tank with largemouth basses, copyright Bemep.


Modern holosteans are ambush predators, feeding on other fish or aquatic invertebrates. In general, larger species tend to prefer a diet of fish whereas smaller species focus on invertebrates, but all appear to be happy to take whatever they may, whether alive or dead. The alligator gar has been claimed to attack humans but no such attacks seem to have been authenticated; Grande (2010) stated that "swimmers probably have very little to fear from them". As well as their sheer size, this accusation may have been fueled by the alligator gar's apparent tendency in some areas to hang around wharves scavenging garbage. Neither bowfins nor gars are of high importance as food fish for humans though their size and strength gain them some attraction as sport fish*. An industry for the production and marketing of bowfin roe has arisen in recent years following the decline in availability of caviar from Russian sturgeon species; no such market exists for gar eggs, which are toxic to humans. Historically, the thick armour of scales covering the skin of gars was used by Caribbean Indians for making breastplates while individual scales could be used for arrowheads.

*Grande (2010) quotes Eberle (1990) to the effect that gars have "a poor reputation among anglers, who believe [they] would have been better suited as land dwellers had they been able to stand their own reflections in the water".

Shortnose gar Lepisosteus platostomus, copyright Rufus46.


Reproductive habits are best known in the bowfin and the longnose gar Lepisosteus osseus. Male bowfins construct a nest in mats of fibrous vegetation, into which they attempt to induce passing females to spawn. Guarding of the eggs after spawning is the duty of the male alone; the female moves on, perhaps to spawn in another male's nest (the male himself may also court more females). The eggs are adhesive and take about a week and a half to hatch. Following hatching, the fry attach themselves to nearby vegetation by an adhesive organ at the end of their snout and spend some time being nourished by the remains of their yolk sac beofre beginning to forage. The male will continue to guard his fry until they reach about a month of age. Reproduction in longnose gars is similar in the production of adhesive eggs and the early sessile, snout-attached period of the life cycle, but differs in that there is no nest construction or parental care. There is a record of gar eggs being deposited in the nest of a smallmouth bass and the fry being subsequently raised cuckoo-wise by the nest's owner, but it is unclear whether this reflects any deliberate action by the parental gars or simply a fortuitous accident. Gars take up to six years to reach maturity, with males maturing a couple of years earlier than females.

Semionotus bergeri, copyright Ghedoghedo.


The fossil record of holosteans extends back to their divergence from the teleosts in the early to mid-Triassic, with the bowfin and gar lineages apparently diverging from each other not long afterwards. As noted above, both lineages include a diversity of extinct members that somewhat belies their current paucity, such as Macrosemiidae and Semionotidae in the gar lineage, and Ophiopsidae, Ionoscopidae, Caturidae and Sinamiidae in the bowfin lineage. The greatest diversity in both lineages was during the Jurassic and Cretaceous (Brito & Alvarado-Ortega 2013; Cavin 2010) and the two modern gar genera appear to have been separate lineages at least since the late Cretaceous (Grande 2010). Holosteans were also more ecologically diverse in the past. Masillosteus, a gar genus from the Eocene of Europe and North America, had a shorter jaw and flatter teeth than modern jaws, and probably fed on harder-shelled animals such as molluscs and/or crustaceans. The Mesozoic 'Semionotidae', suggested by Cavin (2010) to be paraphyletic to the gars, were even more diverse, including marine as well as freshwater forms, and forms that may have plant feeders or detritivores. In the early Jurassic of eastern North America, one group of semionotids underwent a lake-based radiation that has been compared to the modern cichlids of African rift lakes. Adequately covering the diversity of fossil holosteans would make this post considerably longer than it already is; perhaps one day, I'll get to it.

REFERENCES

Brito, P. M. & J. Alvarado-Ortega. 2013. Cipatlichthys scutatus, gen. nov., sp. nov. a new halecomorph (Neopterygii, Holostei) from the Lower Cretaceous Tlayua Formation of Mexico. PLoS One 8 (9): e73551.

Cavin, L. 2010. Diversity of Mesozoic semionotiform fishes and the origin of gars (Lepisosteidae). Naturwissenschaften 97: 1035–1040.

Grande, L. 2010. An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Copeia 2010 (2A): iii–x, 1–871.